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Abstract—An emerging way to deal with high-
dimensional non-euclidean data is to assume that the
underlying structure can be captured by a graph. Recently,
ideas have begun to emerge related to the analysis of
time-varying graph signals. This work aims to elevate
the notion of joint harmonic analysis to a full-fledged
framework denoted as Time-Vertex Signal Processing, that
links together the time-domain signal processing techniques
with the new tools of graph signal processing. This entails
three main contributions: (a) We provide a formal mo-
tivation for harmonic time-vertex analysis as an analysis
tool for the state evolution of simple Partial Differential
Equations on graphs. (b) We improve the accuracy of joint
filtering operators by up-to two orders of magnitude. (c)
Using our joint filters, we construct time-vertex dictionaries
analyzing the different scales and the local time-frequency
content of a signal. The utility of our tools is illustrated
in numerous applications and datasets, such as dynamic
mesh denoising and classification, still-video inpainting, and
source localization in seismic events. Our results suggest
that joint analysis of time-vertex signals can bring benefits
to regression and learning.

Index Terms—Time-Vertex Signal Processing, Graph
Signal Processing, Partial Differential Equations

I. INTRODUCTION

Whether examining consensus and rumor spreading
over social networks [1], transportation networks [2] and
related epidemic spreading [3], neuronal activation pat-
terns in the brain [4], as well as other datasets collected
from a variety of fields, such as physics, engineering, and
life-science, much of the high-dimensional data exhibit
complex non-euclidean properties.

An emerging way to deal with these issues is to use a
graph to capture the structure underlying the data. This
has been the driving force behind recent efforts in the
signal processing field to extend harmonic analysis to
graph signals, i.e., signals supported on the vertices of
irregular graphs [5], [6]. In the field of graph signal
processing (GSP), the introduction of the graph Fourier
transform (GFT) has enabled us to perform harmonic
analysis taking into account the structure of the data, and
has lead to improvements for tasks such as clustering [7],
low-rank extraction [8], spectral estimation [9], [10],
non-stationary analysis [11], [12] and semi-supervised
learning [13], [14].

Nevertheless, though state-of-the-art graph-based
methods have been successful for many tasks, so far
they predominantly ignore the time-dimension of data,
for example by treating successive signals independently
or performing a global average [4], [9], [15]. On the
contrary, many of the systems to which GSP is applied
to are inherently dynamic.

Recently, several ideas begin to emerge related to the
analysis of time-varying graph signals, such as Joint
time-vertex Fourier transform (JFT) [16] and the joint
time-vertex filters [17] and filterbanks [18]. While these
constitute notable contributions, we argue that the poten-
tial of joint harmonic analysis is yet unexplored, both in
terms of its foundations, algorithms, and applications.

In this work we aim at elevating the notion of joint
harmonic analysis to a full-fledged framework, referred
to as the Time-Vertex Signal Processing Framework,
that links together the time-domain signal processing
techniques with the new tools of GSP.

This entails the following contributions:

1. Connection to PDEs. We illustrate how joint anal-
ysis emerges when analyzing the state evolution of
simple Partial Differential Equations (PDEs) on graphs
(Section III-A). We also provide an example (epidemic
spreading) demonstrating that the joint frequency anal-
ysis can be meaningful for the study non-linear and
stochastic processes leading to a compact and intuitive
representation (Section III-B).

2. Accurate fast joint filtering. In Section IV we illustrate
the utility of joint filtering time-vertex signals and pro-
pose a fast filtering implementation, called Fast Fourier-
Chebyshev (FFC) algorithm, which improves upon the
state-of-the-art filters both in terms of separable and
non-separable filtering objectives. For the latter case
especially, our numerical experiments show that FFC can
yield up to two orders of magnitude smaller error.

3. Overcomplete representations. We study redundant
time-vertex dictionaries and exploit them for signal anal-
ysis and synthesis. The proposed framework includes a
frame condition guaranteeing that no information is lost.
Two particular cases are: time-vertex wavelets capturing
the different scales of the signal components, and the



short time-vertex Fourier transform that is useful in de-
termining the local time-frequency content of the signal.

4. Hllustrating the utility of time-vertex analysis. Finally,
Section VI provides experimental evidence for the utility
of joint harmonic analysis in a number of graph-temporal
datasets that were up to now not fully exploited, such
as dynamic meshes, video and general dynamics over
networks. The range of applications covers the classical
signal processing problems of denoising, inpainting and
compression, but also extends to feature extraction for
classification and source localization problems.

A. Related Work

The time-vertex framework is intimately linked with
the stochastic analysis of multivariate signals and, there-
fore, with graphical models (e.g. [19] and references
therein). The main difference between graphical mod-
els and GSP lies in the assumption about the relation
between the signal and graph [20]. Graphical models
adopt a purely Bayesian setting, where edges denote
conditional dependencies between variables. As such,
the graph usually is a proxy for the covariance and is
learned from the data. On the other hand, GSP assumes
that the graph is given and its relation to the signal can
be understood through harmonic analysis.

In this context, the idea of time-vertex analysis can
be traced back to the study [21] aiming to process
multi-modal signals with different graphs associated with
each of their modalities (i.e., one can consider a time-
vertex signal as multi-modal, with time and graph being
the two modalities). Collaboration between the graph
theory and signal processing communities has led to new
tools to process and analyze time-varying graphs and
signals on a graph, such as multilayer graphs and tensor
products of graphs [22]-[24]. The notion of joint time-
vertex harmonic analysis was further realized in [16]
by one of the authors of this work. Therein, the joint
Fourier analysis is presented and its properties analyzed
in details, together with examples of joint filters. In this
work, we leverage these concepts proposing a framework
in which the joint Fourier transform is just one of the
building blocks.

Visualization, filtering and stationarity. The idea of
analyzing the behavior of graph filters with time-varying
signals first appeared in [25], showing that they could be
analyzed by applying jointly a GFT and a Z-transform
and as such they possess a joint frequency response.
Since then, we have seen a number of works dealing
with time-varying signals on graphs: Authors in [26]
propose a method that relies on graph wavelet theory and
product graphs to visualize time-varying data defined on
the vertices of a graph in order to identify spatial and/or

temporal variations. A step towards the graphical model
has been carried out by authors in [27]. In this work,
authors assume data time dependencies to be modeled by
an auto-regressive (AR) process and they propose several
algorithms to estimate the network structure capturing
the spatio-temporal dependencies and the coefficients of
the AR process expressed as graph polynomial filters. In
order to deal with the high computational complexity
of the eigendecomposition, different filtering approxi-
mation algorithms have been proposed, mainly based
on polynomials: centralized and distributed joint filter
2D Chebychev polynomial [16], separable rational [17]
implementations, and autoregressive models [28].

Finally, in parallel with this work, the authors ex-
tended the notions of time stationarity and the recent
graph stationarity [9] to the joint time-vertex domain [29]
providing a framework for the statistical signal process-
ing of time-vertex signals. Authors showed that assuming
joint stationarity to regularize learning can yield signif-
icant accuracy improvements and reduce computational
complexity in both estimation and recovery tasks with
respect to purely time or graph methods [30], [31]. De-
spite the relevance of this work to time-vertex analysis,
here we focus on the purely deterministic setting.

II. HARMONIC TIME-VERTEX ANALYSIS

We denote by G = (V, £, W) the undirected graph,
where V indicates the set of nodes, £ the set of edges and
W is the associated N x N symmetric weight matrix.
Furthermore, let L = Do — W be the combinatorial
Laplacian matrix, i.e. the finite difference approximation
to the continuous Laplacian operator [14] or the Laplace-
Beltrami operator for Riemannian manifolds [32]. We
suppose that the signal on a graph is sampled at T
successive regular intervals of unit length. If we denote
by x; € RY the graph signal at instant ¢, the time-
varying graph signal corresponds to the matrix X =
[1,22,...,27] € RVXT. We denote X7, X, and X *
the transpose, the complex conjugate and the hermitian
of X . Furthermore, we refer to both X and its vectorized
form z = vec(X) € RNT as “time-vertex signal”.

A. The joint time-vertex Fourier transform

The main idea of harmonic analysis is to decompose
a signal into oscillating modes thanks to the Fourier
transform. For instance, one analyses oscillations along
the temporal axis by applying the Discrete Fourier Trans-
form (DFT) independently to each row of X

DFT{X} = XUr, (1)
where Ur is the normalized DFT matrix defined as
e Jwrt 2n(k —1)

Ur(t k) = 2)

with wg =

\/T ) T )



Properties of JFT.

Property 1. JFT is an invertible transform. The inverse JFT
in matrix and vector form are, respectively, JFT'{X} =
Us XU} and JFT' {2} = Uj=.

Property 2. The Parseval relation holds:

N, T NT
DX = > IX k) 6)

n,t=1 0,k=1
Property 3. The transform is independent on the order GFT and
DFT are applied to the time-vertex signal
JFT{X} = GFT{DFT{X}} = DFT{GFT{X}}.
Property 4. The subspace of zero graph and temporal frequency

is spanned by the constant time-vertex signal 11*, with 1 the
all-ones vector.

with ¢,k = 1,2,...,T. Similarly, the Graph Fourier
Transform (GFT) [5], [11], [33] allows us to analyze
oscillations along the graph edges. As each column of
X represents a time instant, the GFT of X for all ¢ reads

GFT{X} = X = U3 X, 3)

where Ug is obtained by the eigendecomposition Lg =
Ug AgU¢ of the graph Laplacian. This spectral decom-
position gives rise to a graph-specific notion of frequency
as their squared modulus corresponds the Laplacian
eigenvalue Ag(¢,0) = Ay.

Harmonic time-vertex analysis amounts to analyzing
oscillations jointly along both the time and the vertex
dimensions. Hence, assuming a non-varying graph in
time, the joint time-vertex Fourier transform, or JFT for
short, is obtained by applying the GFT on the graph
dimension and the DFT along the time dimension [16].

X = JFT{X} =U;XUr. 4)
Expressed in vector form, the transform becomes
&z =JFT{z} =Ujx, %)

where U; = Ur ® Ug is the Kronecker product of
the basis. The relation between Eq.(4) and Eq.(5) is
obtained through the property of the Kronecker product
(Ml ® Mg) xr = MQXMlT

B. Time-vertex calculus and variation

In the following, we briefly present the main time-
vertex differential operators. These will help us (a) to
perform calculus on a finite, discrete time and space,
and (b) to characterize the properties of the signals, such
as smoothness, while taking into account the intrinsic
structure of the data domain.

Time and vertex domains. Before introducing the time-
vertex operators, we momentarily diverge by presenting

the standard definitions in the time and graph domains.
The main discrete calculus operator in time is the first
order difference operator X V}| ; = Ty — Ty—1, taken
here with periodic boundary conditions. Hence, the
symmetric time Laplacian matrix Ly = V;Vr is the
discrete second order derivative in time with reversed
sigh X Lr|, = —x41+2x—x4—1 and with ¢, 1 = x;.
As a circulant matrix, it has eigendecomposition Ly =
Ur AU}, where Ap(k, k) =2 (1 — cos (wg)) -

The operator corresponding to the time derivative
in the vertex is the edge derivative. Given a graph
signal £ € RY, the edge derivative with respect to edge
e = (n,m) at vertex n is given by

0X
el =V W(n,m)[z" —x™]. (7)
Therefore the graph gradient of = at vertex n is
ox
Vo, = {8 } (8)
€ln e€&

and, as before, Lg = V5V, where V[ is the diver-
gence operator of the graph.

Joint domain. We define the joint gradient of a time-
vertex signal X by concatenation of the time and graph

gradients:
VJCE:VGC<|: ]) )

Therefore V; can be rewritten as

Vr ® Ig
Ir Vg |-

The Laplacian is classically defined to equal the diver-
gence of the gradient, and also in our case the joint
Laplacian is Ly = V3;V;. Expanding the expression
while exploiting the mixed-product property of the Kro-
necker product, we find

Ly=(VroIe) (Vr @ Ig) + (IT ® Vg)* (It ® Vi)
= (ViVr) @I+ Ir ® (V&Va)
=Lr®Icg+Ir®Lg = Lt x Lg,

and therefore Lj is also equivalent to the Cartesian
product between the time and graph Laplacians'. The
result of the Cartesian product is a multilayer graph,
referred to as the joint graph J, where the original
graph G is copied at each time step ¢t = 1,2,...,7.
Additionally, each node at layer t is connected to itself
at layer t—1 and ¢+ 1 with periodic boundary conditions.
The Figure 1, which was borrowed from [16], shows an
example of joint graph construction as Cartesian product

XV
Ve X

Vs = { (10)

In this work we consider the Cartesian product for its amenable
spectral properties, but in general other graph products could be
considered.



Fig. 1. The joint graph J is the graph resulting from the Cartesian
product of the input graph GG and the discrete time domain classically
represented as the cycle graph of length 7.

between a graph G and the time domain represented as
a cycle graph with length T'.

It is useful to remind that the Kronecker product of
the two eigenvectors basis Ur and Ug diagonalize the
joint Laplacian with eigenvalues equal to the sum of all
the pairs (wg, A¢) [34]:

Ly=Lr1Ic+ Ir® L
= (UTATUT*) ® IG + IT ® (UGAGUC*J)
= (UT & U(;)(AT X Ag)(UT & UG)* = UJAJU;

where we have used the mixed-product property of the
Kronecker product.

Measures of joint variation. The gradient and its
various norms are often used as regularizers in regression
because they capture the variation of the signal over a
domain of interest. The /5-norm of the joint gradient
measures the total variation of the signal across edges
and consecutive steps. Observe that

IVll3 = 27 Lz = | VaX | + | X Vr [
=tr(XTLeX)+tr(XLr XT) (11)
meaning that ||V x| is separable over the the two
domains.
Analogously, the ¢;-norm of the joint gradient can be
written as the sum of the ¢;-norms

IVl = [[vec(Va X)), + [[vee(XVr)ll,,  (12)

which is often referred as the Total Variation (TV) norm.
In general, it is possible to define a mixed norm N, 4 (-)

Ny (@) £ welvee(Va X) |2 + wr|vee(X Vr )|
(13)
where the p-norm and the g-norm are computed indepen-
dently on the two domains and w¢g, wr are non-negative
weights. Such norms are often useful when the signal
vary differently (e.g., smooth or piece-wise) across the
two domains, as we will show in Section VI-B.

III. DYNAMICS OVER GRAPHS

This section motivates the JFT further by showing that
it can be used to characterize two linear PDEs evolving
over the graph by kernels defined in the joint frequency
domain, and also to provide insight on standard non-
linear PDEs used in epidemic modeling.

A. Linear dynamics on graphs

We are interested in linear PDEs whose solution at
each time step can be expressed as a linear operator
applied to the initial condition. In particular, we consider
the heat diffusion and the wave equations defined in the
discrete setting. We denote x; the initial condition of
the PDEs, or equivalently in the joint spectral domain
Z(0,k) = T1(0) Up(k, 1).

Heat equation. The discrete heat diffusion equation
x: — xt—1 = —sLgx; is, arguably, one of the simplest
dynamics described by differential equations. The pa-
rameter s represents thermal diffusivity and is inter-
preted as a scale parameter for multiscale dynamic graph
wavelet analysis [12] and graph scale-space theory [35].
It is well understood that x; = (I — sLg)!~'ax;. Eval-
uating both the GFT and DFT, one also finds that the
solution also has distinct structure in the joint spectral
domain

= a wi) T —
X(0,k) = \%WZ(Z,I@)

where a(Ag,wr) = (1 — s\)e 9« The JFT of a
heat diffusion process therefore exhibits a smooth non-
separable low-pass form.

(14)

Wave equation. More interesting dynamics can be mod-
eled by the discrete second order differential equation
XLy = sLs X represents a discrete wave propagating
on a graph with speed s > 0. In the appendix we show
that the solution in the joint spectral domain can be
written as

X (0, k) = Ky, wi) Z(£, k) (15)

where R 4
Ks(A\,wg) = Z cos(thy)e Ikt
t

where 0y = arccos(1 — %) and to guarantee stability
s < 4/Anas. Therefore, in the joint spectral domain a

wave has a simple, sparse, and distinctive form.

B. Complex dynamics over networks: the illustrative
example of epidemic models

We next give an example of how the JFT provides
insights on the evolution of a non-linear, discrete, and
non-deterministic model for the spread of an infectious



Low Probability High Probability

o
o

= =
0 g S
o §4 54
w c c
? 3o &2
i £ ]
0 M 0
-02 01 0 01 02 02 01 0 01 02
Frequency [w] Frequency [w]
—6 —6
= =
o 54 54
w g g
»w c =
52 52
[} ]
0 0
02 -01 O 01 0.2 02 01 0 01 02

Frequency [w] Frequency [w]

Fig. 2. JFT of the signal representing the number of infected for
different realization of epidemic spreads, using different models and
contagion probability. The transform allows us to distinguish between
the different parameters of the model.

disease. In particular, we focus on the dynamics corre-
sponding to different compartmental models commonly
used in epidemiology [36]. We simulated the epidemics
spreading over N = 695 cities of Europe according to
two different models: the Susceptible-Exposed-Infected-
Recovered (SEIR) model and the SEIRS model, where
the immunity of recovered individuals is only temporary.
The models are parametrized by the contagion proba-
bility of infection, the infectious, latent and immunity
periods. Each node of the graph represents a city with
a fixed population of individuals. Moreover, inter-city
connections are modeled using two graphs, a terrestrial
location-based graph and the graph of airline connections
between the major city in Europe.

Figure 2 shows the JFT of the simulated epidemic
breakouts for the two different models. Each image
shows the JFT of the signal describing the evolution of
the number of infected over the graph. The transform is
shown in the (w, \) plane, with a gray-scale color coded
representation, where darker gray means higher energy.
Observe that for the SEIRS model (top) the spectrum is
characterized by regularly spaced lines along the angular
frequency axis, occurring because every individual can
be infected again after the temporary immunity period
ceases. The SEIR model on the contrary exhibits a more
diffusive behaviour, without evident periodicity. For each
one of the models, we also simulated scenarios with high
and low probabilities of contagion. It is seen that the high
probability case is characterized by more energy in the
higher part of the spectrum, due to a more impulsive
behaviour of the epidemic breakout. It is interesting
to note that the joint spectral representation allows us
to differentiate between the different models and their
parameters.

/

Fig. 3. The effect of joint filters is easily visualized for the case of a
dynamic mesh of a dancer. By filtering the original mesh (left) using
a joint low-pass separable filter one approximates the time-varying
skeleton of the dancer (center). Using a non-separable wave filter, the
fluidity of the dancer’s motion is emphasized (right).

IV. FAST FILTERING OF TIME-VERTEX SIGNALS

After recalling the definition of joint filters, we next
present a novel algorithm to perform fast filtering on
large graphs. Experiments illustrate that our algorithm
achieves significantly better approximation of filtering
objectives than state-of-the-art, while also not being
constrained to a specific class of separable responses.

A. Joint time-vertex filters

A joint filter h(L¢, Lr) is a function defined in the
joint two-dimensional spectral domain & : Ry x R+— C
and is evaluated at the graph eigenvalues A\ and the
angular frequencies w. The output of a joint filter is

WIg, Ly)x = U h(Ag, 2) Uiz, (16)

where h(Ag, §2) is a diagonal NT x NT matrix defined
as

h(A1,w1) h(A1,wr)
h(Ag, £2) = diag :
h()\N, wT)
and the diag(A) operator creates a matrix with diagonal
elements the vectorized form of A.

h()\N,wl)

Illustration: dynamic mesh filtering. Figure 3 shows
an example of joint filtering of a mesh representing a
dancer’. The time-vertex signal X € RM*T*3  with
N = 1502 and T" = 573, describes the time-varying
coordinates of each vertex of the mesh. We design (a)
a joint separable lowpass filter that attenuates high fre-
quency components in both graph and time domains, and
(b) a wave filter whose frequency response is described
in Eq. (39). In the first case, we obtain the approximate
skeleton of the mesh with rigid movements, whereas the
wave filter produce a fluid (wavy) dancer, enhancing
the frequency components in a non-linear fashion. We
remark that this effect can only be obtained using non-
separable filters.

Zhttp://research.microsoft.com/en-us/um/redmond/events/
geometrycompression/data/default.html



Separable vs. non-separable filters. A notable family
of joint filters are those that have separable response
h(A,w) = h1(A)h2(w). However, due to their simple
form, separable filters cannot model the dynamics of
PDEs (e.g., waves or heat diffusion), where there is
an interplay between the temporal and graph frequency
domains. For this reason, in the following we aim to find
an efficient joints filter implementation for separable as
well as non-separable filtering objectives.

B. Fast joint filtering

Due to the high complexity of eigendecomposition,
graph filters are almost always implemented using fast
2D polynomial [37] and rational [28] approximations.
In the context of time-vertex analysis, the importance
of fast joint filtering is emphasized by the increase
of the problem’s dimensions. Recognizing this need,
researchers have recently proposed distributed joint filter
2D Chebychev polynomial [16] and separable ratio-
nal [17] implementations, appropriate for arbitrary and
separable joint response functions, respectively. In the
following, we improve upon state of the art by enhancing
the filtering approximation at a similar (up to logarithmic
factors) complexity.

The Fast Fourier Chebyshev (FFC) algorithm. The
basic idea of our algorithm is to exploit the small
complexity of FFT and perform graph filtering in the
time-frequency domain. Concretely, to filter X with
response h(\,w), we do the following:

1. Compute the FFT of every row of X, at a total
complexity of O(NT logT).

2. For each wy, approximate h(\,wy) with a Cheby-
shev polynomial of order M and use the fast graph
Chebyshev recursion [11] to filter the corresponding
angular frequency component of X. The complex-
ity of this step is O(MgT|E]).

3. Use the inverse FFT to obtain the filtered time-
vertex signal, with complexity O(NT logT).

Our scheme can approximate both separable or non-
separable joint filters using O(T|E|Mg + NTlogT)
operations, which up to a logarithmic factor is a lin-
ear complexity to the number of edges ||, nodes N,
timesteps 7, and filter order M. Moreover, it can be
performed distributedly since both the FFT and the graph
Chebychev recursion necessitate only local or few hop
information.

Numerical comparison. To evaluate the approximation
properties of the above scheme, we show in Figure 4
numerical experiments for an ideal separable lowpass
filter and a non-separable wave filter on a time-vertex
graph with size N = 5000, T' = 3000. In detail, the
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Fig. 4. Fast joint filtering comparison using different algorithms to
approximate the ideal joint lowpass filter (left) and a non-separable
wave filter (right) approximated in Eq (17) and Eq (18), respectively.
The proposed method (FFC) outperforms the others, in particular for
non-separable filters.

approximated filtering functions (low pass and wave) are,
respectively,

e~ (Ae—Acr) o— (Jwr|—wer)
hip (A, wr) = 5 o s v vy e e e )
hvave (Aey wp) = = ITlorl—arecos(=2e/(Ama) * - (13)

For each case, we compare our algorithm with the
state-of-the-art, i.e., Chebyshev2D approximation [16]
of complexity and the ARMA2D approach [17], while
choosing M¢ and M as graph and temporal polynomial
orders, respectively (here Mg = Mry).

As shown in Figure 4, FFC results in a significant
improvement in accuracy for the same order and the
difference is particularly prominent in the non-separable
case (ARMA2D cannot be used here). We remark how-
ever that, to interpret these results correctly, one has to
consider the complexity of each method:

method complexity applicability
FFC O(T|E|Mg + NTlogT) all
Cheby2D [16] O(T|E|Mr + NTMrMeg) all
ARMAZ2D [17] O(T|E|Me + T|E|Mr) separable

Therefore, for the same order, the three different methods
feature slightly different complexities, implying that a
direct comparison of accuracy is very difficult. Figure 4,
which compares error as a function of the order, does
not reveal that the three different methods actually have
different computation times for the same order. Nev-
ertheless, in our experiments for all orders larger than
2, the asymptotic complexity of FFC is the smallest
(since here Mg = My, logT < MpMg, and logT <
|E|M7/N). We also note that, in practice one often
needs M7 > logT to achieve a good approximation,
in which case FFC is the fastest.



V. TIME-VERTEX DICTIONARIES AND FRAMES

So far, we have looked at time-vertex signals through
the lenses of the canonical joint Fourier bases. However,
in some cases it is beneficial to also consider alternative
representations. For example, in the classic case, the
wavelet and the short time Fourier transforms respec-
tively enable time-scale and time-frequency analysis of
the signal. The purpose of this section is to show how
one can define analogous representations for time-vertex
signals. These can be used for instance to generate fea-
tures given as an input to a classifier (see Section VI-C)
or to regularize an optimization problem such as (34) in
Section VI-C.

Classically, the atoms of the representations are built
by applying a transform (e.g. scaling or modulation) to a
mother function and shifting the resulting functions. We
follow a similar approach, with the difference that the
mother function is replaced by a kernel defined in the
time-vertex frequency domain and the shifting has to be
replaced by an operator suitable to graphs. The spectral
time-vertex wavelet and the short time vertex Fourier
transforms follow as consequences of our framework.

A. Joint time-vertex localization

The ability to localize a kernel over a particular
time and vertex is a key ingredient of our dictionary
construction. In the following, we derive such a joint
localization operator as a generalization of the graph
localization operator [9], [33], [38], which localizes a
kernel h(L¢) onto vertex vy,

Zh )\g ’u,g Ug.

Above, d,, is a Kronecker delta centered at vertex v,,.
Similarly, in the joint domain we define the joint time-
vertex localization operator as the filtering with a two-
dimensional Kronecker delta

Tl 0 2 h(Le, Lr) (6, ©6.).

It turns out that the joint time-vertex localization operator
has the advantages of both the graph localization and the
traditional translation operator. Indeed, we observe the
following relations

TGh = h(Lg)é (19)

(20)

=2

T

1 ) )
h(Ae, wr) e (m)e kT, (n) et

J =
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—

T N |
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From (21), it follows that joint localization consists
of three steps: (a) localizing independently all kernels

h(-,wk), (b) computing the inverse DFT along the other
dimension, and (c) translating the result. Joint localiza-
tion is thus equivalent to independent application of a
graph localization and a translation.

B. Joint time-vertex dictionaries

We proceed to present our dictionary construction
for time-vertex signals. We start with a mother time-
vertex kernel h(A,w) and a transformation s., . (-,-)
parametrized by some values [zy, 2, belonging to the
finite 2D set Zy x Z, C R? and controlling the
kernel’s shape along the vertex and time domains. The
transformed kernel is then obtained by composition

hzx,zw (/\’ w) = h(szA,zw (A, W))

We build our dictionary by transforming h(\, w) with all
Zxy 2w € Zx X 2, (possibly) normalizing, and jointly
localizing the resulting kernels %, . (A, w) at each node
m and time 7. Concretely, the dictionary is

Dy =A{T,)  hop 2} for meV, r=1,2,....T,
and [z, 2] € {2\ X 2.}
(23)

When D;, is overly redundant, one may choose to
consider only a subset of values for m and 7.

(22)

We next consider two interesting examples of the pro-
posed dictionary construction that are generalizations of
the short-time Fourier and wavelet transforms [39], [40]:

Short Time-Vertex Fourier Transform (STVFT). Set
Szy.2. (+,+) to a shift in the spectral domain

Soyze (A w) =X — 25w — 2] (24)

This transform can be considered as a modulation.
Nevertheless, we note that it does not correspond to a
multiplication by an eigenvector as in [33], [41]. Our
construction is more related to [42, Section 3]. Then,
given a separable mother kernel h(\, w) = hg(\) hr(w)
and a finite 2D set 2y x Z,, C R2, the STVFT of signal
X is defined as

STVFT{X}(m o 20) 2 (X, Tl  h(A — 20, w0 —
f Zh X (0, k)ue(m

Provided that h(\,w) is localized around [0, 0], the
amplitude of the coefficient (n,t,zy,2,) indicates the
presence of the spectral mode [z, z,,] at vertex m and
time 7. Moreover, since the mother kernel is separable,
the design in the two domains can be performed inde-
pendently:

For the graph domain, we suggest to select the
values of z), to be equally spaced in [0, Apax| [42,

Zw))

— Zx\, Wk — Zw) )ej““.



Section 3]. The spacing should be selected such that
Y nezs hZ(X\e — z)) = c for every )\, ensuring good
conditioning of the associated frame (see [11, Theorem
5.6]). Because of the graph irregularity, in most of the
cases, we need to keep all possible values for m, i.e.,
m=1,2,...,N.

For the time domain, we recover a traditional STFT,
with the difference that hp(w) is defined in the spectral
domain. Nevertheless, for convenience, the window can
still be designed in the time domain. As a rule of thumb
|Z.] = lpy, where I, is the support of hr in the
time domain®, and the values of 7 should be sampled
regularly with a spacing l%, where R is the desired
redundancy. The choice of the window is highly linked
to the addressed problem. Nevertheless, there are some
general rules that are usually considered. Because of
the Heisenberg uncertainty principle, there is a trade-off
between localization in time and frequency. As a result,
one should choose first the desired precision in one of
the two domains. Then, a window shape can be selected
that minimizes the uncertainty in order to maximize the
simultaneous precision in both domains (i.e. it should be
similar to a Gaussian function). Eventually, the sampling
parameters have to be chosen. Usually in order to avoid
unnecessary computations, the length of the support
of the windows is used as the number of frequency
channels. Then, the shift in time is selected to achieve
a desired redundancy or to ensure some properties such
as tightness. For a more complete treatment we refer the
reader to [39].

Spectral Time-Vertex Wavelet Tranform (STVWT).
Following the idea developed in [11], we set s, . (-, ")
to a generalized graph dilation (or scaling), i.e., a mul-
tiplication in the spectral domain

Szx,2w ()"w) = [Z/\ As 2w W]- (25)

Then, given a kernel h(A,w) the STVWT of X reads
STVWT{X }(m,7, 25, 2) 2 (X, Ty h(za A, 20 w))

1 — ,
= — h(zax A,z w) X (€, kK)uwp(m)el“FT

where z), 2, are the scale parameters for the vertex and
the time dimensions. A usual requirement for h(\,w)
is that it has a zero DC component, i.e., h(0,0) = 0.
Contrarily to the STVFT, the mother kernel here may not
be separable, as illustrated in VI-C. The choice of the
discretization lattice [m, T, 2, 2., is thus more involved
and case dependent: we suggest that m and 7 take all
possible N and T values respectively, while z) and
z, are carefully selected depending on the application.

3In practice, the kernel is chosen to have a compact support in the
time-domain.

This choice is justified by the computational complexity
detailed in the following.

C. Joint time-vertex frames

To make the proposed dictionaries and associated
signal representations usable in practice, we next provide
answers to three key questions: (a) How can we compute
the representations efficiently (i.e., performing analysis
and synthesis)? (b) How can we guarantee that the
associated transforms are well conditioned such that they
can be successfully inverted? (c) How to efficiently invert
them, recovering the original signal? The second point is
particularly important since a well conditioned transform
allows for more robust representations, for instance when
the dictionary is used to solve a synthesis or analysis
regression problem with a sparse regularizer.

Efficient analysis and synthesis. The dictionary atoms
can be seen as a filter-bank {h,(A,w)}.cz,xz,, in
which case the operators going from the signal to the
representation domain and back are the analysis operator

Dh{X}(m7 7—7 Z) = <X7 7-'rr;,];/' hZ> = Cz(ma T)7
and the synthesis operator

DZ{C}(n’t) = Z<Cza7;£]t h‘Z> = Y(nvt)'

)
z

Notice that in general X # Y, and equality holds only
when the filter-bank is a unitary tight frame.

Instead of computing the dictionary explicitly (an
operation that is costly both in memory and in com-
putations), one may acquire the analysis coefficients for
all m, 7 by joint filtering X with kernel h, . taking
advantage of the relation C, = mat(h,(Lg, Lr)x).
Similarly synthesis can be performed by summing fil-
tering operations. Using our FFC filtering algorithm
presented in Section I'V-B, the total analysis complexity
is thus O(|Z\ x Z,|(T|€|Mg + NTlogT)), where
typically Mg = 50.

Conditioning and frame bounds. In several applica-
tions in signal processing one is interested not only in
processing data in another convenient representation, but
also to recover the original signal from its alternative
representation. Redundant invertible dictionaries are re-
ferred to as frames [39], [43]. The following theorem
generalizes the classic [39] results regarding the frame
bounds, providing a condition for a joint time-vertex
dictionary to be a frame, as in the case of graphs [42,
Lemma 1], [11, Theorem 5.6].

Theorem 1. Let {h.(\,w)}.cz «z,
a time-vertex dictionary Dy, and set

o 2 2
A—nlljcnz’z]hz()\g,wkﬂ , B—nl172]L€XzZ:|hZ()\g,wk)| .

be the kernels of



If 0 < A< B < oo, then Dy, is a frame in the sense:
2 2 2
Al X |7 < [IDn{X 3% < BIX |7

RNXT

(26)
for any time-vertex signal X €

The proof can be found in an earlier version of this
work [18, Theorem 1].

The theorem asserts that, if A > 0, no information is
lost when the analysis operator is applied to a time-vertex
signals, thus the transform is invertible. Furthermore, the
ratio A/ B of the frame bounds is related to the condition
number of the frame operator Sp{X} = D; {D{X}},
hence it is decisive for efficient reconstruction when we
want to recover the signal from its representation solving
an optimization problem [11, Section 7].

Efficient inversion. To recover the signal X from the
coefficients C, a solution is to use the pseudo-inverse,
i.e. X = D} {C} or to solve the following convex prob-
lem argminy ||Dp{X} — C’Hg Problematically, these
are computationally intractable for large value of N and
T'. We will instead design a dual set of kernels that allows
us to invert the transform by a single synthesis operation.
To this end, we search for a set of filters h such that
D:{Dp{X}} = X. It is not difficult to see that this
equality is satisfied when

> by ey Aswi) hay 2y Aeswi) =1,V Ag,wie
ZX3Rw
27
Although redundant joint time-vertex frames admit an
infinite number of dual kernel sets satisfying (27), the
typical choice is to use the canonical dual, defined as

-1

h’ZA,ZW (Aév (.Uk) =
25,7,
(28)
In fact, this corresponds to the pseudo-inverse of Dy,
ie., D,TL = D?, while also having a low computational
complexity.

To summarize, given an invertible time-vertex trans-
form Dj, and coefficients C, the inverse transform of
Dy, associated with the set of kernels {h., .}z, -.]ez
is

X - DZ {C} = Z hz,\,zw (LG7LT)CZ,\,ZL.;7 (29)

ZX\sZw

where £ is defined in (28).

VI. EXPERIMENTS

The suitability of the time-vertex framework for sev-
eral classes of problems is illustrated on a wide variety
of datasets: (a) dynamic meshes representing a walking
dog and a dancing man, (b) the Caltrans Performance

Zhgg,z;()\e,wk) Ry 2 (Aes W)

Dog Mesh Dancer Mesh

— JFT
| —o-DFT|
| - - GFT,

normalized error
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Fig. 5. Compactness of the transforms for different datasets: dog and
dancer meshes (above) number of infected over Europe according to
SEIRS model (below left) and traffic flow measured by the PeMS (be-
low right). Normalized error is computed reconstruting the signal after
thresholding the values of the transforms below the p-th percentile.

Measurement System (PeMS) traffic dataset depicting
high resolution daily vehicle flow of 10 consecutive
days in the highways of Sacramento measured every 5
minutes, (c) simulated SEIR- or SEIRS-type epidemics
over Europe, (d) the Kuala Lumpur City Centre (KLCC)
time-lapse video and (e) earthquake waveforms recorded
by seismic stations geographically distributed in New
Zealand, connected to the GeoNet Network.

Results suggest that joint analysis of time-vertex sig-
nals can bring forth benefits in signal denoising and
recovery, learning and source localization problems.
We remark that all the experiments were done using
the GSPBOX [44], the UNLocBoX [45] and the LT-
FAT [46]. Code reproducing the experiments is avail-
able at https://lts2.epfl.ch/reproducible-research/a-time-
vertex-signal-processing-framework/.

A. Compactness of representation

A key motivation behind the joint harmonic analy-
sis is the capability of encoding time-varying graph-
dependent signal evolution in a compact way. Our first
step will therefore be to examine the energy compaction
of the JFT transform in four datasets: two meshes
representing a dancer (N = 1502 points in R® and
T = 570 timesteps) and a dog walking (N = 2502
points in R3 and T' = 52 timesteps), the PeMS traffic
flow dataset (N = 710 stations measuring traffic over
T = 2880 intervals of 5-minute length each) and the
number of infected individuals in an SEIRS epidemic
(see Section III-B for description). In both dynamic
meshes, we consider three signals corresponding to each



of the (z,y,z) coordinates associated with each point.
Transforms with good energy compaction are desirable
because they summarize the data well and can be used to
construct efficient regularizers for regression problems.

To measure energy compactness, we compute the
DFT, GFT and JFT for each dataset, we replace the
spectrum coefficients with magnitudes smaller than the
p-th percentile with zeros and perform the corresponding
inverse transform on the resulting coefficients. Denot-
ing by X the original signal and X, the compressed
one, the compression error is for each p given by
| X, — X || /|| X - As shown in Figure 5, JFT exhibits
better energy compaction properties in all the datasets,
and especially for the meshes where the graph captures
well the signal structure.

B. Regression problems with joint variation priors

We next examine the utility of joint variation priors
for regression problems in two example applications.

Denoising of dynamic meshes. Whenever a smoothness
prior can be assumed, the joint Tikhonov regularization
can be used to denoise a time-varying graph signal. The
prior can be easily expressed in the time-vertex domain
thanks to Eq. (11). Joint denoising is then performed by
solving the following optimization problem

argmin | X — Y[+ 71| Ve X |7+ /| X Vr |7, (30)

where the regularization terms require the solution to be
smooth in both graph and time domains. This problem
has a closed form solution in our framework, which is a
joint non-separable lowpass filter

1
14 1A + 272(1 — cos(2mwg))
(€29)
In order to investigate its performance, we consider the
vertices of a 3D time-varying mesh of size 2502 x 59 x 3
(vertex x time X dimension) representing a walking dog,
we add Gaussian noise to the coordinates, we build a &
nearest neighbor graph based on the distances between
the time average of the coordinates and finally we solve
the problem (30) for each coordinate dimension. We
averaged the results over 20 realizations of the noise.
The meshes in Figure 6 represent, from left to right,
the original, the noisy and the recovered one, for one
realization of the noise. Remarkably, the normalized
error drops from 0.20 to 0.06, respectively before and
after denoising, making the dog distinguishable again.
As side effect, the dog appears to be thinner, due to the
graph regularization. The heat-map in the left corner of
the figure shows the role of the regularization parameters.
We found (using exhaustive search) that the lowest error
is achieved when 7 = 0.71 and 75 = 1.78. We compare

hrik (e, wi) =

20.09
o
o]
=
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Fig. 6. Joint variation priors are useful in denoising the coordinates of
dynamic meshes. The original mesh (left) was corrupted with random
Gaussian noise (center, normalized error 0.2); shown here for one
realization of the noise. After the denoising, the error decreases to
0.06 (right). The normalized error as a function of parameters 71 and
To is shown in a heat-map (below left) averaged over 20 realizations.
The boxplot (below right) shows the minimum achievable error for a
time (7 = 0), graph (72 = 0) and joint variation prior.

the performance of the joint Tikhonov regularization
with respect to time- and graph-only for the best pa-
rameter combinations of all methods. The boxplot on
the right shows the minimum achievable error statistics
in the three cases over the 20 realizations. It is easy to
see that the graph plays a major role in the denoising,
since it encodes the structural information of the mesh.
Nevertheless, the joint approach performs the best, i.e.,
0.062 £ 0.0002, taking advantage of the smoothness in
both domains, while graph and time methods achieve
0.067 £ 0.0003 and 0.095 +£ 0.0002, respectively.

Inpainting of time-lapse video. We consider the prob-
lem of time-vertex signal recovery from noisy, corrupted,
and incomplete measurements. Depending on the char-
acteristics of the signal, the prior N,, , () with different
values of p and ¢ and different weights can be used.
A typical signal recovery problem in signal processing
is the image inpainting, i.e., trying to replace corrupted
or lost part of the image. Since patch-graphs allow
non-local image processing [47], our goal is to extend
graph-based non-local processing to video inpainting and
recovery. However, since our framework is constrained
to static graphs, we focus on the particular case of time-
lapse videos, whose structure stays majorly invariant
throughout the video.

To this end, we corrupted a time-lapse video that
shows the skyline of the Kuala Lumpur City Centre,
which statistical properties were amenable from a graph
perspective, being the skyline static with time-varying
colors. The video has size 160 x 214 x 3 x 604 (height
x width x colors x frames). We removed 20% of
the pixels and 20% of the frames from the original
KLCC video, achieving a normalized error of 0.61. The
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Fig. 7. Comparison of video inpainting performances between
Tikhonov, TV and Joint regularizations. Each box represents a statisti-
cal summary of the error evaluated for each frame of the whole video.
Although TV achieves the best recovery for some frames, in case of
occluded frames the error is very large. Joint regularization Ny 2 (x)
trades the lowest error achievable with a better average recovery.

inpainting is performed solving the optimization problem
for each color using as regularizer Ny o (x):

argmin [ M o X — Y[ + 7| VaX |, +2| X Vrl,
(32)
where M is the mask of the missing entries. The patch
graph G is constructed from the video averaged in time.
The rationale is that the /; over the graph will restore the
missing pixels, being each frame approximately piece-
wise constant, whereas the /5 norm in time recovers the
smooth changes of the colors from dawn until dusk.

TABLE I
VIDEO INPAINTING NORMALIZED ERRORS

Regularizer Pixels Frames Total
Tikhonov 0.051 0.100 0.059
vV 0.048 0.122 0.060
Ny,1 () 0.056 0.059 0.057
Ny 2 () 0.050 0.055 0.051
N2 1 () 0.061 0.103 0.068
N2 2 () 0.053 0.066 0.055

We compare the recovery performance with all the
joint regularizers N, , () for p,q = {1,2}, and with
two baseline algorithms, based on 3D-Tikhonov and
isotropic 3D-TV regularizations [48]. The last two cor-
respond to using a grid graph with equal weights on the
edges. Table I reports the normalized errors averaged
over the pixels-only, frames-only and the whole video.
The better performance achieved by the joint regularizer
Ny 2 () is due to its capability to restore missing frames,
while missing pixels recovery performances are almost
the same. Figure 7 illustrates a summary statistics of the
errors computed over each frame. Although TV performs
the best in the median, in case of occluded frames the
error is much larger w.r.t. the joint recovery, leading to
a higher average error.

Distance from centroids

50 100 150 200 250 300 350 400 450 500 550
Time

Fig. 8. Clustering of the dancer mesh (no noise): the plot (below)
shows for each line the distance between the points stemming from the
STVFT representation and the cluster centroids (one for each line). For
each of the centroids, we show the closest frame of the time-varying
mesh. We observe that each frame belongs to different phase of the
dance, named ”Arms”, ”Legs” or "Body”, depending of the part of the
body mainly involved in the dance.

C. Overcomplete representations

Last, we examine the utility of STVFT and STVWT,
respectively, as a feature extractor for dynamic mesh
clustering and as a dictionary used to uncover the wave-
like structure and epicenter of a seismic event.

Clustering dynamic meshes using STVFT. We con-
sider the motion classification of a dynamic mesh rep-
resenting the dancer, corrupted with additive sparse
noise with density 0.1 with normally distributed entries
and SNR of —20 dB and —10 dB. Our objective is
to determine the phase of the dance (moving arms,
stretching legs and bending body) at each frames by
performing spectral clustering on some representation
of the windowed signal. To obtain the ground-truth, we
labeled each frame by hand and verified that, when the
noiseless signal (i.e., the actual trajectory of the points in
time over each window) was used to define the features,
one obtains a classification accuracy of 0.926.

Since we want to localize spatial-structured phenom-
ena in time, our approach will be to use a STVFT to
derive the representation. To capture the geometry of the
problem, we used a nearest neighbour graph constructed
based on the coordinates of the mesh vertices averaged
in time; this graph was fixed for the whole sequence.
As explained in Section V-B, the STVFT is separable,
meaning that we can handle the vertex and the time
dimensions separately. In the time domain we use a
rectangular window with support equal to 50 samples in
time and spacing such that the overlap is 60%. For the
vertex dimension, we use the an Itersine kernel (defined
in the GSPBOX [44]) that we uniformly translate at 5
different positions in the graph spectral domain.

The STVFT provides features associated to a time
instant that we can directly use to classify the dance
(see Figure 8 for a visual illustration of the clustering
results). Other transforms such as GFT, DFT, and JFT
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Fig. 9. Comparison of clustering accuracy using different transforms
in case of sparse Gaussian noise for SNR -20 dB and -10 dB. Each
box shows a summary statistics of the accuracy computed over 20
different realizations of the noise. Results show that SVTFT achieves
the highest accuracy in average.

do no have this property. Hence, in order to compare
with these other transforms, we use the same rectangular
windows (width 50, overlap 20 samples) to extract
27 time sequences from the signal. We then used the
transformed data associated with each sequence as a
point to be clustered.

Figure 9 illustrates the clustering accuracy statistics
over 20 realizations of sparse noise for features con-
structed based on the magnitude of five representations:
the windowed sequences, as well as their GFT, DFT, JFT,
and STVFT representations. Observe how the presence
of sparse noise severely hampers classification when the
raw signal is used, with the average accuracy dropping
from 0.926 for the clean signals to 0.469 and 0.74 for
—20 dB and —10 dB, respectively.

We can also see that the two representations leading
to the highest median accuracy are the JFT and STVFT,
suggesting the utility of joint harmonic representations.
Nevertheless, the STVFT provides more robust estimates
with an average accuracy of 0.869 rather than 0.792 for
the JFT at —20 dB.

Seismic epicenter estimation with STVWT. We an-
alyze seismic events recorded by the GeoNet sensor
network whose epicenters were chosen to be randomly
distributed in different areas of New Zealand. We extend
the results presented in [18] to a greater dataset using
the STVWT with mother kernel based on the wave
PDE, which allows us to decompose the signal as sum
of PDE solutions. As a first approximation, when the
waves propagate in a continuous domain or a regular

lattice, seismic waveforms can be modeled as oscillating
damped waves [49]. Our premise is thus that we can
approximate the seismic waveforms using a small set
of damped waves propagating on the graph connecting
the seismic stations. Thus, we expect the damped wave
mother kernel

B+jwr —

h(/\g,wk)zi e +/\g/2 1

VT 2(cosh (B + jwi) + Ae/2 — 1)
to be a good approximation of the seismic waves
recorded by the sensors, with the damping factor (3
chosen to fit the damping present in the seismic signals.
To construct the STVWT, we select 10 equally spaced
values in [0,2] for z) and set z, = 1. To estimate the
epicenter of the earthquake we solve

arg mén ID;{C} = X |3 +7IICll1,

(33)

(34)

where 7 is the regularization parameter controlling the
trade-off between the fidelity term (selected using ex-
haustive search) and the sparseness assumption and D}
is the synthesis operator associated with STVWT.

The solution provides important pieces of information.
Firstly, using the synthesis operator we can obtain a
denoised version of the original process. Secondly, the
non-zero coefficients of C, describe the origins and
amplitudes of the different components. Therefore, for
each node we take the maximum value over time and
scales and we use the result as weights to average
the graph coordinates to obtain the epicenter. Being a
weighted average of different coordinates, the estimated
source will not correspond to a vertex of the graph
in general. We compare the performance of STVWT
with the estimate obtained using only the signal ampli-
tude: for each earthquake we average the coordinates
of the stations using as weights energy of the signals.
Figure 10 shows on the left the comparison over 40
different seismic events randomly distributed over the
New Zealand between the two methods. STVWT based
on the damped wave kernel achieves an average error
of 48.5 km, providing an almost twofold improvement
over the baseline, whose average performance is 88.3
km. On the right, it illustrates the estimate for 3 different
seismic events and the respective seismic waveforms.
These results show that the proposed method signifi-
cantly improves the source estimation performance.

VII. CONCLUSION

This work puts forth a Time-Vertex Signal Processing
Framework, that facilitates the analysis of graph struc-
tured data that also evolve in time. We motivate our
framework leveraging the notion of partial differential
equation on graphs. We introduce joint operators, such
as time-vertex localization and we present a novel ap-
proach to significantly improve the accuracy of fast joint
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Fig. 10. Left: Comparison of seismic epicenter localization performances between amplitude-based approach and STVWT. The bar graph
shows that the second outperforms the first, suggesting that the damped wave model assumption significantly improves the source estimation
performance. Right: Results for 3 different seismic events in New Zealand. Right top: the graph is created using the coordinates of the available
stations for each event and connecting the closest stations. The stars and the circles are the true and estimated sources of the seismic wave
respectively. Right bottom: Signal recorded by the sensors over time for each event.

filtering. We also illustrate how to build time-vertex dic-
tionaries, providing conditions for efficient invertibility
and examples of constructions. Our experimental results
on a variety of datasets, suggest that the proposed tools
can bring forth significant benefits in various signal
processing and learning tasks involving time-series on
graphs.

APPENDIX
A. Wave equation

In the continuous setting, the wave equation is
8ttu —Au=0

where u: R x R — C is a function of both time ¢ € R

and space = € RY, with A being the Laplacian operator.
Assuming vanishing initial velocity v(0) = 0, the so-

lution w(t) is given via functional calculus by [50]

u(t) = cos(tv/—A)u(0)

where cos(ty/—A) is called propagator operator.

To obtain a discrete wave equation evolving on a
graph, we approximate the second order time derivative
with its stencil approximation and the continuous Lapla-
cian A with the graph Laplacian Lg with reversed sign:

XLy =sLgX, (36)

(35)

where s > 0 is the speed of the propagation. We assume
that the solution can be written as

z; = Ks(Lg, t)x1 = Ky 521, (37

where K;, = K (Lg,t) is a matrix obtained ap-
plying the function K (Lg,t) to the scaled Lapla-
cian sLs and parametrized by the time ¢t. We will
call the operator K;, “the discrete analogue of
the wave propagator” of Eq. (35). Therefore, matrix

X =K, Swl] = K{x,} is obtained stacking the
vectors x; of Eq. (37) along the columns. Substituting

(37) into (36), we obtain K{x1}Lr = sLoK{x1}
which in the graph spectral domain is
K} Ly = sAcK @}, (38)

where ﬁt’s = K (Ag,t). Equation (38) is formally
analogous to the eigendecomposition of the operator Lr,
therefore, the ¢-th row of K {&;} must be an eigenvector
of L with eigenvalue )\, for every ¢. Using Eq. (??),
we obtain

Ks(Ne, t) = cos(tby), (39)

with §, = arccos(1— %) Since the arccos(z) is defined
only for x € [—1, 1], to guarantee stability the parameter
s must satisfy s < 4/Aq.. We remark that this result
is in agreement with the stability analysis of numerical
solver for the discrete wave equation presented in [50].

Taking the DFT of the wave kernel in Eq. (39), we

obtain
Zcos (the)e —Jwkt

Therefore, the solution in the joint spectral domain can
be written as

X(4,k) = Ko (Mo, wr) Z(4, ),
= z1(O) Ur(k, 1).

Ko(Ae,wr)

where Z (¢, k)

REFERENCES

[1] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi, “The
anatomy of a scientific rumor,” Scientific reports, 2013.

P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich
monitoring of road and traffic conditions using mobile smart-
phones,” in SENSYS. ACM, 2008, pp. 323-336.

R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, “Epidemic processes in complex networks,” Rev.
Mod. Phys., no. 3, pp. 925-979, aug 2015.

[2]

[3]



[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]
[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S.
Bassett, and A. Ribeiro, “Graph frequency analysis of brain
signals,” IEEE Journal of Selected Topics in Signal Processing,
no. 7, pp. 1189-1203, 2016.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains,” Signal Process. Mag., IEEE, no. 3, pp. 83-98,
2013.

A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs,” IEEE Trans. Signal Process., no. 7, pp. 1644-1656,
2013.

M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering.” in NIPS, 2001, pp.
585-591.

N. Shahid, N. Perraudin, V. Kalofolias, G. Puy, and P. Van-
dergheynst, “Fast robust pca on graphs,” IEEE Journal of Selected
Topics in Signal Processing, no. 4, pp. 740-756, 2016.

N. Perraudin and P. Vandergheynst, “Stationary signal processing
on graphs,” IEEE Trans. Signal Process., no. 99, pp. 1-1, 2017.
A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sta-
tionary graph processes and spectral estimation,” arXiv preprint
arXiv:1603.04667, 2016.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, no. 2, pp. 129-150, 2011.

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied
and Computational Harmonic Analysis, no. 1, pp. 53-94, 2006.
M. Belkin and P. Niyogi, “Semi-supervised learning on Rieman-
nian manifolds,” Machine learning, no. 1-3, pp. 209-239, 2004.
A. J. Smola and R. Kondor, “Kernels and regularization on
graphs,” in Learning theory and kernel machines, B. Scholkopf
and M. Warmuth, Eds.  Springer, 2003, pp. 144-158.

V. Kalofolias, “How to learn a graph from smooth signals,” in
AISTATS, 2016.

A. Loukas and D. Foucard, “Frequency Analysis of Temporal
Graph Signals,” in GLOBALSIP, 2016.

E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Separable
autoregressive moving average graph-temporal filters,” in EU-
SIPCO. IEEE, 2016, pp. 200-204.

F. Grassi, N. Perraudin, and B. Ricaud, “Tracking time-vertex
propagation using dynamic graph wavelets,” in GLOBALSIP,
2016.

R. Dahlhaus and M. Eichler, “Causality and graphical models in
time series analysis,” Oxford Statistical Science Series, pp. 115—
137, 2003.

C. Zhang, D. Floréncio, and P. A. Chou, “Graph Signal
Processing—A Probabilistic Framework,” Microsoft Research Lab
- Redmond, Tech. Rep., 2015.

A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive
data sets with irregular structure,” IEEE Signal Process. Mag.,
no. 5, pp. 80-90, 2014.

M. Kiveld, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, “Multilayer networks,” Journal of Complex
Networks, no. 3, pp. 203-271, 2014.

K. Benzi, B. Ricaud, and P. Vandergheynst, “Principal patterns
on graphs: Discovering coherent structures in datasets,” IEEE
Transactions on Signal and Information Processing over Net-
works, no. 2, pp. 160173, 2016.

K. Smith, L. Spyrou, and J. Escudero, “Graph-Variate Signal
Analysis: Framework and Applications,” ArXiv e-prints, Mar.
2017.

A. Loukas, A. Simonetto, and G. Leus, “Distributed autoregres-
sive moving average graph filters,” IEEE Signal Process. Lett.,
no. 11, pp. 1931-1935, 2015.

P. Valdivia, F. Dias, F. Petronetto, C. T. Silva, and L. G.
Nonato, “Wavelet-based visualization of time-varying data on
graphs,” in 2015 IEEE Conference on Visual Analytics Science
and Technology (VAST), Oct 2015, pp. 1-8.

[27]

[28]

[29]
[30]
(31]

[32]

(33]

(34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

J. Mei and J. M. F. Moura, “Signal processing on graphs:
Estimating the structure of a graph,” in in ICASSP. 1EEE, 2015,
pp- 5495-5499.

E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive
moving average graph filtering,” IEEE Trans. Signal Process.,
no. 2, pp. 274-288, 2017.

N. Perraudin, A. Loukas, F. Grassi, and P. Vandergheynst, “To-
wards stationary time-vertex signal processing,” in /[CASSP, 2017.
A. Loukas and N. Perraudin, “Predicting the evolution of station-
ary graph signals,” arXiv preprint arXiv:1607.03313, 2016.

A. Loukas and N. Perraudin, “Stationary time-vertex signal
processing,” ArXiv e-prints, Nov. 2016.

D. Burago, S. Ivanov, and Y. Kurylev, “A graph discretization of
the laplace-beltrami operator,” Journal of Spectral Theory, vol. 4,
no. 4, pp. 675-714, 2014.

D. I. Shuman, B. Ricaud, and P. Vandergheynst, ‘“Vertex-
frequency analysis on graphs,” Applied and Computational Har-
monic Analysis, no. 2, pp. 260-291, 2013.

R. Merris, “Laplacian matrices of graphs: a survey,” Linear
Algebra and its Applications, pp. 143 — 176, 1994.

A. Loukas, M. Cattani, M. Zuniga, and J. Gao, “Graph scale-
space theory for distributed peak and pit identification,” in /PSN.
ACM/IEEE, 2015.

W. O. Kermack and A. G. McKendrick, “A contribution to the
mathematical theory of epidemics,” Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering
Sciences, no. 772, pp. 700-721, 1927.

D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev
polynomial approximation for distributed signal processing,” in
DCOSS. IEEE, 2011, pp. 1-8.

N. Perraudin, B. Ricaud, D. Shuman, and P. Vandergheynst,
“Global and Local Uncertainty Principles for Signals on Graphs,”
arXiv preprint arXiv:1603.03030, 2016.

O. Christensen, An introduction to frames and Riesz bases
(Second Edition). Birkhduser, 2016.

K. Grochenig, Foundations of Time-Frequency Analysis, ser.
Applied and Numerical Harmonic Analysis. Boston, MA:
Birkhduser Boston, 2001.

D. I. Shuman, B. Ricaud, and P. Vandergheynst, “A windowed
graph fourier transform,” in Statistical Signal Processing Work-
shop (SSP), 2012 IEEE. Ieee, 2012, pp. 133-136.

D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst,
“Spectrum-adapted tight graph wavelet and vertex-frequency
frames,” IEEE Trans. Signal Process., no. 16, pp. 4223-4235,
2015.

J. Kovacevic and A. Chebira, “Life beyond bases: The advent of
frames (part i),” IEEE Signal Process. Mag., no. 4, pp. 86—104,
July 2007.

N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for
signal processing on graphs,” ArXiv e-prints, Aug. 2014.

N. Perraudin, D. Shuman, G. Puy, and P. Vandergheynst, “UN-
LocBoX A matlab convex optimization toolbox using proximal
splitting methods,” ArXiv e-prints, feb 2014.

Z. Prisa, P. L. Sgndergaard, N. Holighaus, C. Wiesmeyr, and
P. Balazs, The Large Time-Frequency Analysis Toolbox 2.0.
Cham: Springer International Publishing, 2014, pp. 419-442.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-12976-
1.25

A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for
image denoising,” in in CVPR, June 2005, pp. 60-65.

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q.
Nguyen, “An augmented lagrangian method for total variation
video restoration,” IEEE Trans. Image Process., vol. 20, no. 11,
pp- 3097-3111, 2011.

W. Lowrie, Fundamentals of Geophysics, 2nd ed.
University Press, 2007.

D. R. Durran, Numerical methods for wave equations in geo-
physical fluid dynamics. Springer Science & Business Media,
2013.

Cambridge



