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ABSTRACT

One way of tackling the dimensionality issues arising in the modeling
of a multivariate process is to assume that the inherent data structure
can be captured by a graph. We here focus on the problem of predict-
ing the evolution of a process that is time and graph stationary, i.e., a
time-varying signal whose first two statistical moments are invariant
over time and correlated to a known graph topology. This stationarity
assumption allows us to regularize the estimation problem, reducing
the variance and computational complexity, two common issues plagu-
ing high-dimensional vector autoregressive models. In addition, our
method compares favorably to state-of-the-art graph and time-based
methods: it outperforms previous graph causal models as well as a
purely time-based method.

Index Terms— Signal processing on graphs, multivariate pro-
cesses, prediction, joint stationarity, time-varying graph signals.

1. INTRODUCTION

In the problem of modeling and predicting statistical processes wide-
sense stationarity is a helpful assumption that allows us to learn the
statistics of a process using very few samples [1]. Especially for time-
series prediction, learning from few samples is crucial as one needs to
estimate future values after only partially observing a single realization
of the statistical process. This is the main reason why classical models
for estimation and prediction of univariate processes, such as Wiener
filters and autoregressive moving average models (ARMA), rely on sta-
tionarity to produce predictions.

For high-dimensional multivariate processes, following the same
methodology is often problematic as the number of parameters to be
estimated increases quadratically with the number of variables, often
rendering the problem intractable [2]. A common way to deal with
this dimensionality issue is to utilize the inherent relationships be-
tween variables often represented by a graph [3]. Initially the graph
assumption has been considered for time-invariant problems, to ad-
dress tasks such as clustering [4, 5], low-rank extraction [3], spectral
estimation [6–8] and semi-supervised learning [9, 10]. Very recently,
following the generalization of harmonic analysis [11–13] and filter-
ing [14–16] to time-varying graph signals, the graph assumption was
also leveraged for modeling time-vertex processes [17–20].

The objective of this paper is to propose a multivariate model that
exploits the graph structure so as to facilitate the task of prediction.
From a statistical perspective, our model amounts to assuming station-
arity not only with respect to the time-dimension, but also with respect
of the graph topology [6,7]. The concept of joint (time-vertex) station-
arity, which was introduced in [21], was shown to facilitate regression
even when the graph is only approximately known or the process is
only close to stationary. Unlike previous work however, we here focus

on prediction, where causality is important as one needs to forecast the
future in a timely manner.

Concretely, we bring forth a decoupling theorem that makes it pos-
sible to decouple a joint (time-vertex) multivariate process into inde-
pendent univariate processes. This allows us to (i) estimate the model
parameters using traditional univariate techniques, and (ii) to further
reduce the computational complexity by combining the training stage
with (an optimal) low-rank approximation of our data. The learned
models are causal and can be used to provide optimal predictions (in
the mean-squared error (MSE) sense) at a cost that is equivalent to a
constant number of matrix-vector multiplications. Our numerical re-
sults for two real datasets show that the proposed method outperforms
the state-of-the-art graph causal models as well the univariate ARMA
and multivariate vector autoregressive (VAR) approaches.

2. BACKGROUND

This section recalls some background information that will be used
throughout the paper.

Graph signal processing. We consider a weighted undirected graph
G = (V, E ,WG), with V the set of N nodes (vertices), E the edge set,
and WG the weighted adjacency matrix. The graph Fourier transform
(GFT) of a vector x ∈ RN suported on V is defined as GFT{x} =
UH
Gx, where UG is the eigenvector matrix of the discrete1 Laplacian

matrix LG = diag(WG1N ) −WG = UGΛGU
H
G . Matrix ΛG is di-

agonal and contains the graph Laplacian eigenvalues (often referred as
the graph frequencies [22]) in its main diagonal. The GFT allows us to
extend filtering to graphs, where filtering x with the graph filter h(LG)
corresponds to element-wise multiplication in the spectral domain

h(LG)x
∆
= UGh(ΛG)U

H
G x.

The scalar function h : R+ 7→ R indicates the graph filter frequency
response and is applied to the diagonal elements of ΛG .

Time-vertex signal processing. Let now X = [x1,x2, . . . ,xT ] ∈
RN×T be the matrix that collects T successive temporal realizations
of the graph process xt evolving over G. Let also from now on x =
vec(X) be the vectorized form of X . Then, from [13] the joint (time-
vertex) Fourier transform (JFT) of X is

JFT{X} = U>G XU∗T , (1)

where UG is the graph Laplacian eigenvector matrix and U∗T is the
complex conjugate of the DFT matrix. Matrix UT can also be inter-
preted as the eigenvector matrix of the symmetric time Laplacian ma-
trix LT = UT ΛT UH

T , where ΛT (k, k) = 2(1 − cos (ωk)) and the

1Though we use the combinatorial Laplacian in our presentation, our results
are also applicable for alternative matrix representations of a graph, such as the
graph shift, the random-walk, and the normalized Laplacian matrices.



angular frequency ωk = 2π(k − 1)/T . In vectorized form, the JFT in
(1) is JFT{x} = UH

J x, with UJ = UT ⊗UG being a unitary matrix
and ⊗ denoting the Kronecker operator.

Similar to the graph filters, now we talk about joint (time-vertex)
filters h(LG,LT ) [15, 16]. The joint frequency response h : R+ ×
R 7→ R is a function that operates on graph frequencies λG and angular
frequencies ω. The output of a joint filter is

h(LG,LT )x
∆
= UJ h(ΛG ,Ω)UH

J x, (2)

with h(ΛG ,Ω) is a NT ×NT diagonal matrix with [h(ΛG ,Ω)]k,k =
h(λn, ωτ ) and k = N(τ − 1) + n.

Jointly stationary processes. The first step in predicting the evolution
of a process is to choose a good model for it. Motivated by the impor-
tance of stationarity for modeling statistical processes, our recent work
generalized stationarity to time-vertex processes [18]. Specifically, a
jointly wide-sense stationary (JWSS) process is defined as:

Definition 1 (JWSS process). A process x = vec(X) is called Jointly
Wide-Sense Stationary (JWSS), if and only if (i) the first moment of
the process is constant E[x] = c1NT and (ii) the covariance matrix
of the process is a joint filter Σx = h(LG,LT ), where h(·, ·) is a
non-negative real function referred to as joint power spectral density
(JPSD).

This definition is a generalization of the classical notion of wide-sense
stationarity, where now one assumes simultaneously wide-sense sta-
tionarity w.r.t. both the time and vertex domains. Indeed, assuming
that a process is JWSS is equivalent to asserting that the process is
(multivariate) time wide-sense stationary w.r.t. the time domain and
(multivariate) vertex wide-sense stationary w.r.t. the graph domain (see
Section 3.A in [18]).

In the sequel, we make use of this JWSS hypothesis and answer the
question: “How to construct models that concisely capture the char-
acteristics of a JWSS process in order to facilitate short-term predic-
tion?”. One way to exploit the JWSS of graph processes is by modeling
it with non-causal models. Specifically, since the covariance of a JWSS
signal x is diagonalizable by UJ , without loss of generality, x can be
modeled as

a(LG,LT )x = b(LG,LT ) ε, (3)

where the innovation vector ε = vec(E) is a random vector of some
arbitrary distribution, with constant mean and identity covariance ma-
trix Σε = I , implying that the above model is equivalent to the one
considered in [18]. Matrices a(LG,LT ) and b(LG,LT ) are arbitrary
joint filters (and not necessarily polynomials).

Despite its generality, model (3) does not suit our task of efficient
prediction. First, the computational complexity of (3) scales with the
number of nodes N and the graph process observations T , rendering
the forecasting a computationally heavy task even for moderate graph
dimensions. Second, (3) is not always causal. This is problematic
for the task of prediction, where one needs to forecast the future in a
timely manner. To this end, next we introduce a graph causal model
which alleviates the computational costs and models the JWSS graph
process in a causal fashion.

3. PREDICTING EVOLVING GRAPH SIGNALS

This section contains the theoretical contribution of this paper, where
our objective is to forecast to the evolution of an observed JWSS pro-
cess x with zero mean and JPSD h(ω, λ). We first introduce a causal
model for x and then derive an optimal predictor for the future values
of the process, in a mean-squared error (MSE) sense. The section is

concluded by showing how the model parameters that approximate an
arbitrary process (not necessarily causal) are estimated.

Graph causal models. As with classical VARMA models, for fore-
casting purposes it is more practical to assume that the output at time
t can be expressed as a function of the input-output variables at the
previous time steps, yielding the graph causal model2

P∑
p=0

ap(LG)xt−p =

Q∑
q=0

bq(LG) εt−q, (4)

where ap(LG) and bq(LG) represent the kernel matrices for some
model orders P and Q and εt is the tth column of E. The canonical
form of (4) is directly obtained by setting a0(LG) = b0(LG) = I . Ob-
viously, every causal model can be written in the form (4) for P →∞
and Q→∞. Note also that (4) reduces the computational complexity
to that of sparse matrix vector multiplication. We will refer to (4) as a
graph causal VARMA (GC-VARMA) model.

Prediction. Suppose that x is the output of a graph causal model,
where the input ε has zero mean and identity covariance. This implies
that x abides to

xt =

Q∑
q=0

bq(LG) εt−q −
P∑
p=1

ap(LG)xt−p. (5)

We consider that we have observed the vectors {x1, . . . ,xt−1} and
that we want to estimate xt from these values. Note that from (5) the
knowledge of {x1, . . . ,xt−1} implies also the knowledge of the real-
izations {ε1, . . . , εt−1}. Let us then denote with xt|t−1 the random
vector realization of xt conditioned to the vectors observed until t−1.
We predict xt, thus obtaining the one-step predictior x̃t, as the condi-
tional expectation of xt given the realizations {x1, . . . ,xt−1}, i.e.,

x̃t = E[xt|t−1] =

Q∑
q=0

bq(LG)E[εt−q|t−1]−
P∑
p=1

ap(LG)xt−p. (6)

Since in (6) εt−q|t−1 is the known realization of εt−q , we can sub-
stitute εt−q|t−1 = xt−q|t−1 − x̃t−q for q = 1, . . . , Q and write x̃t
as

x̃t = E[εt] +
Q∑
q=1

bq(LG)
(
xt−q|t−1 − x̃t−q

)
−

P∑
p=1

ap(LG)xt−p

=

Q∑
q=1

bq(LG) (xt−q − x̃t−q)−
P∑
p=1

ap(LG)xt−p, (7)

where in the above expression we exploited the fact that E[εt] = 0N .
In the following, we will show that this corresponds to the optimal
choice, as it yields the minimum MSE. The k-step predictor can be
obtained by repeating the above computation k times.

MSE analysis. Similar to the purely temporal case [23], the one-step
prediction error et = xt − x̃t depends only on the unknown innova-
tions εt and the achieved MSE is the smallest possible. To see this, we
need to show that et = εt, or equivalently that dt = et − εt = 0. By

2Throughout this work, our definition of causality is identical to that used in
multivariate processes [2], which is different from the restricted causality used
in the graph vector autoregressive model [17]. To avoid confusion, when refer-
ring to [17] we will use the notation of graph restricted causality VAR (GRC-
VAR) model.



plugging (7) into the definition of dt, we get

dt = et − εt = xt − x̃t − εt =

Q∑
q=1

bq(LG) (εt−q − et−q)

= −
Q∑
q=1

bq(LG)dt−q. (8)

Therefore, for the considered canonical model
∑Q
q=0 bq(LG)dt−q =

0N for every t, which, under the assumption that the noise model is
invertible3, implies dt = 0N . Directly, we find that et = εt and the
one-step MSE is equal to

E[‖xt − x̃t‖22]
N

=
E[εH

t εt]

N
=

tr
(
E[εtεH

t ]
)

N
=

tr (Σεt)

N
. (9)

Since εt is unknown at time t, the above corresponds to the smallest
achievable MSE.

Model estimation. We now want to identify the parameters of the
graph causal model, i.e., the functions ap and bq which best match the
observed process X ∈ RN×T . The canonical way to achieve this
would be to minimize the prediction error residual by solving the fol-
lowing (non-linear) system of N × T equations involving (P +Q)N
unknowns4

min
ap,bq
‖xt+1 − x̃t+1(ap, bq)‖22, (10)

where by x̃t+1(ap, bq) we refer to the causal model based on a1(LG),
. . . , aP (LG) and b1(LG), . . . , bQ(LG). In the sequel, we restrict
the design to kernels that are linear, shift-invariant graph filters,
i.e., kernels of the form ap(LG) = UGap(ΛG)U

H
G and bq(LG) =

UGbq(ΛG)U
H
G which decouple and simplify the problem into a N

independent and well-studied problems with smaller complexity.

Proposition 1 (Decoupling). Given the graph causal model (4)

P∑
p=0

ap(LG)xt−p =

Q∑
q=0

bq(LG)εt−q, (11)

and denote as ε̂t(n) = (UH
G εt)(n) and x̂t(n) = (UH

Gxt)(n) the n-th
entry of the GFT of εt and xt, respectively. Then, the input-output re-
lation of ε̂t(n) and x̂t(n) for every n is given by an ARMA(P,Q) model∑P
p=0 ap(n)x̂t−p(n) =

∑Q
q=0 bq(n) ε̂t−q(n) with scalars ap(n) =

[ap(ΛG)]n,n and bq(n) = [bq(ΛG)]n,n .

Proof (Sketch): The claim can be proven by substituting ap(LG) =
UGap(ΛG)U

H
G and bq(LG) = UGbq(ΛG)U

H
G in (11) and multiply

both sides by UH
G . �

Proposition 1 suggests that the graph causal model can be decom-
posed into N univariate ARMA processes, one for each graph fre-
quency. These univariate processes are always uncorelated and they
become independent when the innovation εt follows a Gaussian dis-
tribution. The latter has two important consequences: (i) in the graph
frequency domain the model estimation of the graph causal model is
split inN independent problems involving T equations and P +Q un-
knowns; (ii) despite being non-linear, the model estimation for each of

3System
∑Q
q=0 bq(LG)dt−q = 0N has exactly one solution when matrix

b0(LG)⊕b1(LG)⊕ . . .⊕bQ(LG) is invertible, or equivalently when bq(LG)
is invertible for each q.

4A matrix function, i.e., a function that preserve the space spanned by the
matrix, of an N ×N matrix has N degrees of freedom.

the N problems corresponds in fitting an temporal ARMA to a time-
series. We can therefore use a number of well studied methods to solve
for it, such as the subspace Gauss-Newton approach of [24]. The ex-
act coefficients of the graph causal model are then found by an inverse
GFT.

We remark that in our analysis the eigendecomposition of the graph
Laplacian LG is necessary to estimate the model parameters. There-
fore, the proposed framework suits better cases for small to medium
sized graphs, where the eigenvalue decomposition cost (inherent in
joint models) is overshadowed by that of the model estimation.

Low-rank models. The computational overhead of model estimation
can be reduced by considering that graph processes are often (approx-
imately) sparse in the graph frequency domain and thus consider only
a subset of time-series. To limit large increments in prediction error,
we can perform the selection process after first rotating the data. Con-
cretely, let S denote the index set of size K = |S| and let U be a
unitary (rotation) matrix. The {U ,S} low-rank approximation of X
is

X̃U,S = UISU
HX, (12)

where IS is a diagonal indicator matrix such that [IS ]i,i = 1 if i ∈ S
and zero otherwise.

The following theorem asserts that, if we are interested in the ex-
pected behavior, the best low-rank approximation of a JWSS process
uses the graph eigenvectors UG to rotate the data (corresponding to the
GFT). The letter is beneficial to us since it jointly exploits the spar-
sity in the graph Fourier domain and decouples the time-series, which
coincides also with the first step in the model estimation. Therefore,
by modelling only the time-series specified by the set S we attain a
complexity reduction by a factor of N/K in the model estimation.

Theorem 1 Let X be a zero-mean JWSS process. The best rank-K
approximation of X is given by

{UG ,S?} = argmin
U,S

E
[∥∥∥X − X̃U,S

∥∥∥2

F

]
s.t. |S|= K,

where S? contains the indices of the top K-diagonal elements of
UH
GE
[
XXH

]
UG .

Proof Let us define A = U(I − IS)U
H. Then, following the

Eckart–Young–Mirsky theorem [25, 26], the expected approximation
error becomes

E
[∥∥∥X − X̃U,S

∥∥∥2

F

]
= E

[
‖AX‖2F

]
= tr

(
AE[XXH]AH

)
. (13)

Then, from Theorem 1 of [18], for each time instant xt, the graph
signal is stationary with covariance Σt = E[xtxH

t ] = UGg
2
t (ΛG)U

H
G

implying that

ΣG = E[XXH] =

T∑
t=1

E[xtx∗t ] =
T∑
t=1

Σt = UGg
2(ΛG)U

H
G ,

where g2(ΛG) =
∑T
t=1 g

2
t (ΛG) reordered such that g(λ1) ≥

g(λ2) ≥ . . . g(λN ). Then, by substituting the expression of ΣG
into (13) we obtain

E
[∥∥∥X − X̃U,S

∥∥∥2

F

]
= tr

(
AΣGA

H
)
=
∥∥∥Σ1/2
G −UISU

HΣ
1/2
G

∥∥∥2

F

=
∥∥∥g(ΛG)−UISU

Hg(ΛG)
∥∥∥2

F
.

(14)
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Fig. 1: Prediction error in two datasets. A small horizontal offset is
inserted to improve visibility.

By setting B = UH
GUISU

HUG , (14) becomes

E
[∥∥∥X − X̃U,S

∥∥∥2

F

]
=

N∑
i=1

|g(λi)−Bi,ig(λi)|2 +
∑
i 6=j

|Bi,jg(λi)|2

≥
N∑
i=1

|g(λi)|2 |1−Bi,i|2 ≥
N∑

i=K+1

|g(λi)|2= E
[∥∥∥X − X̃U,S?

∥∥∥2

F

]
,

(15)

where in the third step we use the fact that Bi,i ≤ 1 and is exactly 1
at most K times. The last expression shows that the global minimum
is achieved for X̃U,S? with S containing the K largest components of
g(λ). �

4. NUMERICAL RESULTS

We evaluate our method with two real data sets, namely the Mo-
lene weather data set and with a dynamic mesh representing a dog
walking. The Molene data set contains hourly temperature measure-
ments of N = 32 weather stations in the region of Brest (France) for
T = 744 hours. The used graph is a geometric graph constructed
from the node coordinates, with an average degree of 12. The to-
be-predicted signal on graph are the temperature measurements in
degrees Celsius. The dog mesh consists of N = 250 points (nodes)
over T = 59 timesteps. We build a 10-nearest neighbor graph based
on the distances between the coordinates over the first timestep. The
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Fig. 2: Prediction error (top) and computational time (bottom) as a
function of the ignored time-series in the low-rank prediction of the
Molene dataset. At the expense of a small decrease in accuracy –here
measured by the percentage of the data variance ignored– the estima-
tion of graph causal models becomes very scalable.

to-be-predicted signal corresponds to the x-axis coordinate of each
node over time. For both datasets, we used the first half of the data
(along the time dimension) for the model estimation, and for each
t = T/2 + 1, . . . , T we computed the k-step prediction root NMSE
error ‖x̃t+k|t − xt+k‖2/‖xt+k‖2.

We compare the performance of the proposed GC-VARMA model
(4) with the (i) independent ARMA models, which model and predict
each time-series independently (using N ARMA series), (ii) with the
GRC-VAR model from [17], and (iii) with a standard vector autore-
gressive VAR model [2]. Since we here focus on constructing a process
model given a graph, we do not attempt to identify the graph from the
data as in [17]. We expect however that, when combined with graph
identification, the prediction accuracy could be improved. Though the
above models were not overly sensitive to parameterization in our ex-
periments, the reported results we illustrate the prediction only for the
best orders identified via exhaustive search5.

Fig. 1 (a) shows the prediction error up to 5 future steps for all
methods in the Molene weather dataset. We note that the proposed
GC-VARMA model achieves the best performance, though the pre-
diction error is reasonable only up to two future steps. On the other
hand, the GRC-VAR approach is suitable only for one step in the fu-
ture. In Fig. 1 (b) on the other hand, we show the prediction error for
the dog dynamic mesh. We first note that the classic multivariate VAR
model was not included in the results as it ran into numerical instabil-
ities; this is common issue with VAR and VARMA models when the
length of the timeseries is not much larger than the number of time-
series. This issue is also present for the GRC-VAR, which achieves
a reasonable performance up to 2 prediction steps, but produces poor
long-term predictions. The proposed GC-VARMA model achieves the
best performance and significantly outperforms the other multivariate

5For Molene, we selected: GC-VARMA P = 3 and Q = 2, GRC-VAR
P = 10, ARMA P = 4 and Q = 4, VAR P = 3. For the dog dynamic mesh,
we set: GC-VARMA P = 3 and Q = 2, GRC-VAR P = 10, ARMA P = 3
and Q = 2.



approaches. However, contrarily to the Molene weather dataset, the
disjoint ARMA method gives also a reasonable performance close to
the GC-VARMA. Further, as the walking dog scenario is more regular
than the temperature variations we can predict reasonably well up to
five future steps.

Lastly, Fig. 2 examines the effect of low-rank prediction on the 2-
steps prediction error and model estimation time on the Molene dataset.
In this experiment, we tested low-rank predictors which ignored a given
percentage of the data variance (as estimated by the training data).
Moreover, we considered the full dataset of T = 31 × 24 hours. As
supported by our theoretical results, performing the approximation in
the graph spectral domain (GC-VARMA) far outperforms a naive ap-
proximation in the native graph domain, where one chooses to model
only the timeseries with the most variance, yielding a significant com-
putational benefit at the expense of only a small decrease in prediction
accuracy.

5. CONCLUSIONS

This work proposed GC-VARMA, a model that relies on the assump-
tion of joint (time-vertex) wide-sense stationarity and can be used
to optimally forecast the future outcomes of processes evolving on
graphs. The joint stationarity assumption allowed us deal with the
high-dimensionality of the data, while also reducing the computational
complexity of model estimation to that of fitting univariate ARMA
models to a set of time-series. In our experiments, GC-VARMA was
found to outperform a vector autoregressive (VAR) model, a state-
of-the-art graph causal model, as well as a purely time-based model.
However, we remark that the proposed model requires the eigendecom-
position of the graph Laplacian, which renders it suitable for graphs
consisting of up to a few thousand nodes.
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