
UNLocBoX

A matlab convex optimization toolbox using proximal splitting methods

Nathanael Perraudin, David Shuman,
Gilles Puy and Pierre Vandergheynst

January, 2014

Abstract

Nowadays the trend to solve optimization problems is to use specific algo-
rithms rather than very general ones. The UNLocBoX provides a general frame-
work allowing the user to design his own algorithms. To do so, the framework try
to stay as close from the mathematical problem as possible. More precisely, the
UNLocBoX is a Matlab toolbox designed to solve convex optimization problem of
the form

min
x∈C

K∑
n=1

fn(x),

using proximal splitting techniques. It is mainly composed of solvers, proximal
operators and demonstration files allowing the user to quickly implement a prob-
lem.

1 Introduction
The UNLocBoX is designed to solve convex optimization problems of the form

min
x∈RN

f1(x) + f2(x), (1)

or more generally

min
x∈RN

K∑
n=1

fn(x), (2)

where the fi are lower semi-continuous convex functions from RN to (−∞,+∞]. We
assume lim‖x‖2→∞

{∑K
n=1 fn(x)

}
=∞ and the fi have non-empty domains, where

the domain of a function f is given by

domf := {x ∈ Rn : f(x) < +∞}.

In problem (2), and when both f1 and f2 are smooth functions, gradient descent meth-
ods can be used to solve (1); however, gradient descent methods cannot be used to

1

solve (1) when f1 and/or f2 are not smooth. In order to solve such problems more
generally, we implement several algorithms including the forward-backward algorithm
[1]-[3] and the Douglas-Rachford algorithm [4, 5]-[8].1

Both the forward-backward and Douglas-Rachford algorithms fall into the class
of proximal splitting algorithms. The term proximal refers to their use of proximity
operators, which are generalizations of convex projection operators. The proximity
operator of a lower semi-continuous convex function f : RN → R is defined by

proxf (x) := arg min
y∈RN

{
1

2
‖x− y‖22 + f(y)

}
. (3)

Note that the minimization problem in (3) has a unique solution for every x ∈ RN , so
proxf : RN → RN is well-defined. The proximity operator is a useful tool because
(see, e.g., [9, 10]) x∗ is a minimizer in (1) if and only if for any γ > 0,

x∗ = proxγ(f1+f2)(x
∗). (4)

The term splitting refers to the fact that the proximal splitting algorithms do not di-
rectly evaluate the proximity operator proxγ(f1+f2)(x), but rather try to find a solution
to (4) through sequences of computations involving the proximity operators proxγf1(x)
and proxγf2(x) separately. The recent survey [11] provides an excellent review of
proximal splitting algorithms used to solve (1) and related convex optimization prob-
lems.

The toolbox is essentially made of three kind of functions:

• Solvers: the core of the toolbox

• Proximity operators: they solve small minimization problems and allow a quick
implementation of common problems.

• Demonstration files: examples to help you to use the toolbox

The design of the UNLocBoX was largely inspired by the LTFAT toolbox [12]. The
authors are jointly developing mat2doc a documentation system that allows to generate
documentation from source files.

2 Solvers / algorithm
The forward-backward algorithm can be used to solve

min
x∈RN

f1(x) + f2(x),

when either f1 or f2 is a continuously differentiable convex function with a Lipschitz
continuous gradient. A function f has a β-Lipschitz-continuous gradient∇f if

‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2 ∀x, y ∈ RN , (5)
1In fact, the toolbox implements generalized versions of these algorithms that can solve problems with

sums of a general number of such functions, but for simplicity, we discuss here the simplest case of two
functions.

2

where β > 0.
If, without loss of generality, f2 is the function with a β-Lipschitz-continuous gra-

dient ∇f2, then x∗ is a solution to (1) if and only if for any γ > 0 (see, e.g., [3,
Proposition 3.1]),

x∗ = proxγf1 (x∗ − γ∇f2(x∗)) . (6)

The forward-backward algorithm finds a point satisfying (6) by computing a sequence{
x(k)

}
k=0,1,...

via

x(k+1) = proxγf1

(
x(k) − γ∇f2(x(k))

)
. (7)

For any x(0), the sequence
{
x(k)

}
k=0,1,...

converges to a point satisfying (6), which
is therefore a minimizer of (1). For a detailed convergence analysis that includes gen-
eralizations of (7) which may result in improved convergence rates, see [3, Theorem
3.4].

The associated Matlab function forward_backward takes four parameters

function sol = forward_backward (x0, f1, f2, param).

x0 ∈ RN is the starting point for the algorithm. f1 and f2 are two Matlab structures
that represent the functions f1 and f2. Each of these structures needs at least two fields.
The Matlab structure f1 contains the fields f1.eval and f1.prox. The former is
a Matlab function that takes as input a vector x ∈ RN and returns the value f1(x), the
latter is a Matlab function that takes as input a vector x ∈ RN , a strictly positive real
number τ and returns the vector proxτf1(x) (In Matlab, write: f1.prox=@(x, T)
prox_f1(x, T), where prox_f1(x, T) solves the problem proxTf1(x) given
in equation 3). In the same way, the Matlab structure f2 contains the fields f2.eval
and f2.grad. The former is a Matlab function that takes as input a vector x ∈ RN
and returns the value f2(x), the latter is also a Matlab function that takes as input a
vector x ∈ RN and returns the vector ∇f2(x) (In Matlab, write: f2.grad=@(x)
grad_f2(x), where grad_f2(x) return the value of ∇f2(x)). Finally, param is
a Matlab structure that containing a set of optional parameters. The list of parameters
is described in the help of the function itself. The following two fields are specific to
the forward_backward function:

• param.method: “ISTA” or “FISTA”. Specify the method used to solve prob-
lem (1). ISTA stands for the original forward-backward algorithm while FISTA
stands for its accelerated version (for details, see [13]).

• param.gamma: step-size parameter γ. This constant should satisfy: γ ∈
[ε, 2/β − ε], for ε ∈]0,min{1, 1/β}[.

• param.lambda:λ weight of the update term used in ISTA method ∈ [ε, 1]. By
default, it’s equal to one.

3

2.1 Douglas-Rachford
The Douglas-Rachford algorithm [4][5] is a more general algorithm to solve

min
x∈RN

f1(x) + f2(x)

that does not require any assumptions on the smoothness of f1 or f2. For any constant
γ > 0, a point x∗ ∈ RN is a solution to (1) if and only if there exists a y∗ ∈ RN such
that [8, Proposition 18]

x∗ = proxγf2(y∗), and (8)

proxγf2(y∗) = proxγf1
(
2proxγf2(y∗)− y∗

)
. (9)

To find x∗ and y∗ that satisfy (8) and (9), the Douglas-Rachford algorithm computes
the following sequence of points, for any fixed γ > 0 and stepsize λ ∈ (0, 2):

x(k) = proxγf2(y(k)), and (10)

y(k+1) = y(k) + λ
(

proxγf1

(
2x(k) − y(k)

)
− x(k)

)
. (11)

The convergence of the Douglas-Rachford algorithm is analyzed in [7, Corollary
5.2] and [8, Theorem 20], which also show that the algorithm can be accelerated by
allowing the step size λ to change at every iteration of the algorithm. Note that while
the Douglas-Rachford algorithm does not require any smoothness assumptions on f1
or f2, it requires two proximal steps at each iteration, as compared to one proximal step
per iteration for the forward-backward algorithm.

The associated Matlab function douglas_rachford takes four parameters

function sol = douglas_rachford (x0, f1, f2, param).

As in Section 2.1, x0 ∈ RN is the starting point for the algorithm. f1 and f2 are
two Matlab structures that represent the functions f1 and f2. The Matlab structure f1
contains the fields f1.eval and f1.prox. The former is a Matlab function that takes
as input a vector x ∈ RN and returns the value f1(x), the latter is a Matlab function
that takes as input a vector x ∈ RN , a strictly positive real number τ and returns the
vector proxτf1(x). The Matlab structure f2 contains the exact same fields but for the
function f2. Finally, param contains a list of parameters. The list of parameters is
described in the help of the function itself. The following two fields are specific to the
douglas_rachford function:

• param.lambda: λ acts as a stepsize parameter. Let ε ∈]0, 1[, λ should be in
the interval [ε, 2− ε]. Its default value is 1.

• param.gamma: γ > 0 controls the speed of convergence. Its default value is
1.

4

2.2 Alternating-direction method of multipliers (ADMM)
Augmented Lagrangian techniques are classical approaches for solving problem like:

min
x∈RN

f1(x) + f2(Lx). (12)

First we reformulate (12) to

min
x∈RN ,y∈RM

Lx=y

f1(x) + f2(y).

We then solve this problem using the augmented Lagrangian technique.

Warning: the proximal operator of function f1 is defined to be:

proxLf1τ (z) = arg min
x∈RN

τf1(x) +
1

2
‖Lx− z‖22

The ADMM algorithm can be used when f1 and f2 are in Γ0(RN) and in Γ0(RM)
withLTL invertible and (ridomf1)∩L(ridomf2) 6= ∅. The associated Matlab function
ADMM takes five parameters:

function sol = admm(x_0, f1, f2, param).

As in Section 2.1, x0 ∈ RN is the starting point for the algorithm. f1 and f2 are
two Matlab structures that represent the functions f1 and f2. The Matlab structure f1
contains the fields f1.eval and f1.prox. The former is a Matlab function that takes
as input a vector x ∈ RN and returns the value f1(x), the latter is a Matlab function
that takes as input a vector x ∈ RN , a strictly positive real number τ and returns the
vector proxτf1(x). The Matlab structure f2 contains the exact same fields but for the
function f2. Finally, param contains a list of parameters. The list of parameters is
described in the help of the function itself. The following field is specific to the admm
function:

• param.gamma: γ > 0 controls the speed of convergence. Its default value is
1.

• param.L: L is an operator or a matrix. Its default value is the identity.

2.3 Other solvers
The UNLocBoX contains some other solvers that should not be forgotten. Very impor-
tant are the generalization of forward backard (generalized forward backward), Dou-
glas Rachford (PPXA) and ADMM (SDMM). Those allows to solve problems of the
type (2). A list of the solver can be found at http://unlocbox.sourceforge.
net/doc/solver/index.php.

5

http://unlocbox.sourceforge.net/doc/solver/index.php
http://unlocbox.sourceforge.net/doc/solver/index.php

3 Proximal operator
For every function that is minimized by the UNLocBoX, the gradient or the proximal
operator has to be determined. The toolbox provide some of the most common ones
(see table 3). A complete list can be found at http://unlocbox.sourceforge.
net/doc/prox/index.php.

All proximal operator functions take as input three parameters: x, lambda,
param. First, x is the initial signal. Then lambda is the weight of the objective
function. Finally, param is a Matlab structure that containing a set of optional param-
eters.

Function Explanation
prox_l1 `1 norm proximal operator. Solve:

min
x

1

2
‖x− z‖22 + λ‖Ψ(x)‖1

Prox_linf `∞ norm proximal operator. Solve:

min
x

1

2
‖x− z‖22 + λ‖Ψ(x)‖∞

prox_tv TV norm proximal operator. Solve:

min
x

1

2
‖x− z‖22 + λ‖x‖TV

prox_l12 `12 norm2 proximal operator. Solve:

min
x

1

2
‖x− z‖22 + λ‖x‖12

prox_l1inf `1∞ norm3 proximal operator. Solve:

min
x

1

2
‖x− z‖22 + λ‖x‖1∞

prox_nuclear_norm `∗ norm proximal operator. Solve:

min
x

1

2
‖x− z‖22 + λ‖x‖∗

Table 1: List of proximal operators

If we would like to restrict the set of admissible functions to a subset C of RL, i.e.

6

http://unlocbox.sourceforge.net/doc/prox/index.php
http://unlocbox.sourceforge.net/doc/prox/index.php

find the optimal solution to (2) considering only solutions in C, we can use projection
operator instead of proximal operators. Indeed proximal operators are generalization
of projections. For any nonempty, closed and convex set C ⊂ RL, the indicator func-
tion [11] of C is defined as

iC : RL → {0,+∞} : x 7→

{
0, if x ∈ C
+∞ otherwise.

, (13)

The corresponding proximity operator is given by the projection onto the set C:

PC(y) = arg min
x∈RL

{
1

2
‖y − x‖22 + iC(x)

}
= arg min

x∈C

{
‖y − x‖22

}
Such restrictions are called constraints and can be given, e.g. by a set of linear equa-
tions that the solution is required to satisfy. Table 3 summaries some of the projections
function present in the toolbox.

proj_b1 Projection on B1-ball. lambda is an unused parameter for
compatibility reasons. Solve:

min
x
‖x− z‖22 s.t. ‖x‖1 < ε

proj_b2 Projection on B2-ball. lambda is an unused parameter for
compatibility reasons. Solve:

min
x
‖x− z‖22 s.t. ‖x‖2 < ε

Table 2: List of projection operators

4 Example
The problem Let’s suppose we have a noisy image with missing pixels. Our goal
would be to find the closest image to the original one. We begin first by setting up
some assumptions about the problem.

Assumptions In this particular example, we firstly assume that we know the position
of the missing pixels. This can be the result of a previous process on the image or
a simple assumption. Secondly, we assume that the image is not special. Thus, it is
composed of well delimited patches of colors. Thirdly, we suppose that known pixels
are subject to some Gaussian noise with a variance of ε.

7

Original image Noisy image Depleted image

Figure 1: This figure shows the image chosen for this example: the cameraman.

Formulation of the problem At this point, the problem can be expressed in a mathe-
matical form. We will simulate the masking operation by a mask A. This first assump-
tion leads to a constraint.

Ax = y

where x is the vectorized image we want to recover, y are the observe noisy pixels and
A a linear operator representing the mask. However due to the addition of noise this
constraint is a little bit relaxed. We rewrite it in the following form

‖Ax− y‖2 ≤ ε

Note that ε can be chosen equal to 0 to satisfy exactly the constraint. In our case, as the
measurements are noisy, we set ε to the standard deviation of the noise.

Using the prior assumption that the image has a small TV-norm (image composed
of patch of color and few degradee), we will express the problem as

arg min
x

‖x‖TV subject to ‖b−Ax‖2 ≤ ε (Problem I)

where b is the degraded image and A an linear operator representing the mask. ε is a
free parameter that tunes the confidence to the measurements. This is not the only way
to define the problem. We could also write:

argmin
x
‖b−Ax‖2 + λ‖x‖TV (Problem II)

with the first function playing the role of a data fidelity term and the second a prior
assumption on the signal. λ adjusts the tradeoff between measurement fidelity and prior
assumption. We call it the regularization parameter. The smaller it is, the more we
trust the measurements and vice-versa. ε play a similar role as λ. Note that there exist
a bijection between the parameters λ and ε leading to the same solution. The bijection
function is not trivial to determine. Choosing between one or the other problem will
affect the solvers and the convergence rate.

8

Solving problem I The UNLocBoX solvers take as input functions with their prox-
imity operator or with their gradient. In the toolbox, functions are modelized with
structure object with at least two fields. One field contains an operator to evaluate the
function and the other allows to compute either the gradient (in case of differentiable
function) or the proxitity operator (in case of non differentiable functions). In this
example, we need to provide two functions:

• f1(x) = ||x||TV
The proximal operator of f1 is defined as:

proxf1,γ(z) = argmin
x

1

2
‖x− z‖22 + γ‖z‖TV

This function is defined in Matlab using:

paramtv.verbose=1;
paramtv.maxit=50;
f1.prox=@(x, T) prox_tv(x, T, paramtv);
f1.eval=@(x) tv_norm(x);

This function is a structure with two fields. First, f1.prox is an operator taking as
input x and T and evaluating the proximity operator of the function (T plays the
role of γ is the equation above). Second, and sometime optional, f1.eval is also
an operator evaluating the function at x.
The proximal operator of the TV norm is already implemented in the UNLocBoX
by the function prox_tv. We tune it by setting the maximum number of itera-
tions and a verbosity level. Other parameters are also available (see documenta-
tion http://unlocbox.sourceforge.net/doc.php).

– paramtv.verbose selects the display level (0 no log, 1 summary at conver-
gence and 2 display all steps).

– paramtv.maxit defines the maximum number of iteration.

• f2 is the indicator function of the set S defines by ||Ax− b||2 < ε. We define the
proximity operator of f2 as

proxf2,γ(z) = argmin
x

1

2
‖x− z‖22 + iS(x),

with iS(x) is zero if x is in the set S and infinite otherwise. This previous problem
has an identical solution as:

argmin
z
‖x− z‖22 subject to ‖Az − by‖2 ≤ ε

It is simply a projection on the B2-ball. In matlab, we write:

param_proj.epsilon=epsilon;
param_proj.A=A;
param_proj.At=A;
param_proj.y=y;
f2.prox=@(x,T) proj_b2(x,T,param_proj);
f2.eval=@(x) eps;

9

http://unlocbox.sourceforge.net/doc.php

The prox field of f2 is in that case the operator computing the projection. Since
we suppose that the constraint is satisfied, the value of the indicator function is
0. For implementation reasons, it is better to set the value of the operator f2.eval
to eps than to 0. Note that this hypothesis could lead to strange evolution of the
objective function. Here the parameter A and At are mendatory. Note that A =
At, since the masking operator can be performed by a diagonal matrix containing
1’s for observed pixels and 0’s for hidden pixels.

At this point, a solver needs to be selected. The UNLocBoX contains many differ-
ent solvers. You can try them and observe the convergence speed. Just remember that
some solvers are optimized for specific problems. In this example, we present two of
them forward_backward and douglas_rachford. Both of them take as input
two functions (they have generalization taking more functions), a starting point and
some optional parameters.

In our problem, both functions are not smooth on all points of the domain leading
to the impossibility to compute the gradient. In that case, solvers (such as forward
backward) using gradient descent cannot be used. As a consequence, we will use
Douglas Rachford instead. In matlab, we write:

param.verbose=1;
param.maxit=100;
param.tol=10e-5;
param.gamma=1;
sol = douglas_rachford(y,f1,f2,param);

• param.verbose selects the display level (0 no log, 1 summary at convergence and
2 display all steps).

• param.maxit defines the maximum number of iteration.

• param.tol is stopping criterion for the loop. The algorithm stops if

n(t)− n(t− 1)

n(t)
< tol,

where n(t) is the objective function at iteration t

• param.gamma defines the stepsize. It is a compromise between convergence
speed and precision. Note that if gamma is too big, the algorithm might not
converge.

The solution is displayed in figure 2

Solving problem II Solving problem II instead of problem I can be done with a small
modification of the previous code. First we define another function as follow:

param_l2.A=A;
param_l2.At=A;

10

Problem I − Douglas Rachford

Figure 2: This figure shows the reconstructed image by solving problem I using Dou-
glas Rachford algorithm.

param_l2.y=y;
param_l2.verbose=1;
f3.prox=@(x,T) prox_l2(x,lambda*T,param_l2);
f3.grad=@(x) 2*lambda*A(A(x)-y);
f3.eval=@(x) lambda*norm(A(x)-y,’fro’);

The structure of f3 contains a field f3.grad. In fact, the l2 norm is a smooth function. As
a consequence the gradient is well defined on the entire domain. This allows using the
forward backward solver. However, we can in this case also use the Douglas Rachford
solver. For this we have defined the field f3.prox.

We remind that forward backward will not use the field f3.prox and Douglas Rach-
ford will not use the field f3.grad. The solvers can be called by:

sol21 = forward_backward(y,f1,f3,param);

Or:

sol22 = douglas_rachford(y,f3,f1,param);

These two solvers will converge (up to numerical errors) to the same solution. How-
ever, convergence speed might be different. As we perform only 100 iterations with
both of them, we do not obtain exactly the same result. Results is shown in figure 3.

Remark: The parameter lambda (the regularization parameter) and epsilon (The
radius of the l2 ball) can be chosen empirically. Some methods allow to compute those
parameter. However, this is far beyond the scope of this tutorial.

11

Problem II − Forward Backward Problem II − Douglas Rachford

Figure 3: This figure shows the reconstructed image by solving problem II.

12

Appendix: example’s code

1 %% Initialisation
2 clear all;
3 close all;
4

5 % Loading toolbox
6 global GLOBAL_useGPU;
7 init_unlocbox();
8

9 verbose=2; % verbosity level
10

11 %% Load an image
12

13 % Original image
14 im_original=cameraman;
15

16 % Displaying original image
17 imagescgray(im_original,1,'Original image');
18

19 %% Creation of the problem
20

21 sigma_noise = 20/255;
22 im_noisy=im_original+sigma_noise*randn(size(im_original));
23

24 % Create a matrix with randomly 50 % of zeros entry
25 p=0.5;
26 matA=rand(size(im_original));
27 matA=(matA>(1-p));
28 % Define the operator
29 A=@(x) matA.*x;
30

31 % Depleted image
32 y=matA.*im_noisy;
33

34 % Displaying noiy image
35 imagescgray(im_noisy,2,'Noisy image');
36

37 % Displaying depleted image
38 imagescgray(y,3,'Depleted image');
39

40 %% Setting the proximity operator
41

42 % setting the function f1 (norm TV)
43 paramtv.useGPU = GLOBAL_useGPU; % Use GPU
44 paramtv.verbose = verbose-1;
45 paramtv.maxit = 50;
46 f1.prox=@(x, T) prox_tv(x, T, paramtv);
47 f1.eval=@(x) tv_norm(x);
48

49 % setting the function f2
50 param_proj.epsilon = sqrt(sigma_noise^2*length(im_original(:))*p);
51 param_proj.A = A;
52 param_proj.At = A;
53 param_proj.y = y;

13

54 param_proj.verbose = verbose-1;
55 f2.prox=@(x,T) proj_b2(x,T,param_proj);
56 f2.eval=@(x) eps;
57

58 % setting the function f3
59 lambda = 10;
60 param_l2.A = A;
61 param_l2.At = A;
62 param_l2.y = y;
63 param_l2.verbose = verbose-1;
64 param_l2.tight = 0;
65 param_l2.nu = 1;
66 f3.prox=@(x,T) prox_l2(x,lambda*T,param_l2);
67 f3.grad=@(x) 2*lambda*A(A(x)-y);
68 f3.eval=@(x) lambda*norm(A(x)-y,'fro')^2;
69

70 %% Solving problem I
71

72 % setting different parameters for the simulation
73 param.verbose = verbose; % display parameter
74 param.maxit = 100; % maximum number of iterations
75 param.tol = 1e-5; % tolerance to stop iterating
76 param.gamma = 1 ; % Convergence parameter
77 % solving the problem with Douglas Rachord
78 sol = douglas_rachford(y,f1,f2,param);
79

80 %% Displaying the result
81 imagescgray(sol,4,'Problem I - Douglas Rachford');
82

83 %% Solving problem II (forward backward)
84 param.gamma=0.5/lambda; % Convergence parameter
85 param.tol=1e-5;
86 % solving the problem with Douglas Rachord
87 sol21 = forward_backward(y,f1,f3,param);
88

89 %% Displaying the result
90 imagescgray(sol21,5,'Problem II - Forward Backward');
91

92 %% Solving problem II (Douglas Rachford)
93 param.gamma=0.5/lambda; % Convergence parameter
94 sol22 = douglas_rachford(y,f3,f1,param);
95

96 %% Displaying the result
97 imagescgray(sol22,6,'Problem II - Douglas Rachford');
98

99 %% Close the UNLcoBoX
100 close_unlocbox();

References
[1] D. Gabay, “Chapter ix applications of the method of multipliers to variational

inequalities,” Studies in mathematics and its applications, vol. 15, pp. 299–331,
1983.

14

[2] P. Tseng, “Applications of a splitting algorithm to decomposition in convex pro-
gramming and variational inequalities,” SIAM Journal on Control and Optimiza-
tion, vol. 29, no. 1, pp. 119–138, 1991.

[3] P. Combettes and V. Wajs, “Signal recovery by proximal forward-backward split-
ting,” Multiscale Modeling & Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.

[4] J. Douglas and H. Rachford, “On the numerical solution of heat conduction prob-
lems in two and three space variables,” Transactions of the American mathemati-
cal Society, vol. 82, no. 2, pp. 421–439, 1956.

[5] P. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear oper-
ators,” SIAM Journal on Numerical Analysis, vol. 16, no. 6, pp. 964–979, 1979.

[6] J. Eckstein and D. Bertsekas, “On the douglas—rachford splitting method and
the proximal point algorithm for maximal monotone operators,” Mathematical
Programming, vol. 55, no. 1, pp. 293–318, 1992.

[7] P. Combettes, “Solving monotone inclusions via compositions of nonexpansive
averaged operators,” Optimization, vol. 53, no. 5-6, 2004.

[8] P. Combettes and J. Pesquet, “A douglas–rachford splitting approach to nons-
mooth convex variational signal recovery,” Selected Topics in Signal Processing,
IEEE Journal of, vol. 1, no. 4, pp. 564–574, 2007.

[9] B. Martinet, “Détermination approchée d’un point fixe d’une application pseudo-
contractante. cas de l’application prox,” CR Acad. Sci. Paris Ser. AB, vol. 274, pp.
A163–A165, 1972.

[10] R. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM
Journal on Control and Optimization, vol. 14, no. 5, pp. 877–898, 1976.

[11] P. Combettes and J. Pesquet, “Proximal splitting methods in signal processing,”
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.
185–212, 2011.

[12] P. L. Søndergaard, B. Torrésani, and P. Balazs, “The Linear Time Frequency Anal-
ysis Toolbox,” International Journal of Wavelets, Multiresolution Analysis and
Information Processing, vol. 10, no. 4, 2012.

[13] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp.
183–202, 2009.

15

	Introduction
	Solvers / algorithm
	Douglas-Rachford
	Alternating-direction method of multipliers (ADMM)
	Other solvers

	Proximal operator
	Example

